精英家教网 > 高中数学 > 题目详情
21、已知圆C:x2+y2-4x+2y+1=0,直线l:y=kx-1.
(1)当k为何值时直线l过圆心;
(2)是否存在直线l与圆C交于A,B两点,且△ABC的面积为2?如果存在,求出直线l的方程,如果不存在,请说明理由.
分析:(1)由已知中圆C的一般方程x2+y2-4x+2y+1=0,我们可以求出圆C的标准方程,求出圆心坐标后,代入直线方程构造出一个关于k的一元一次方程,解方程即可得到答案.
(2)由(1)的结论我们易得圆C的半径为2,又由△ABC的面积为2,则∠ACB=90°,求出满足条件的k值,代入即可得到满足条件 的直线方程.
解答:解:(1)圆C:x2+y2-4x+2y+1=0的一般方程为(x-2)2+(y+1)2=2
其中圆心为(2,-1)点
若直线l:y=kx-1过圆心
则-1=2k-1,解得K=0
即k=0时,直线l过圆心;
(2)∵圆C的半径为2
故当△ABC的面积为2时,OA⊥OB
又∵直线l:y=kx-1恒过圆上一点(0,-1)
故当K=±1时满足要求
此时直线方程为y=±x-1.
点评:本题考查的知识点是直线与圆相交的性质,其中求出圆的的标准方程是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案