精英家教网 > 高中数学 > 题目详情

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.

(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;

(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

 

【答案】

(1);(2)以每小时6千克的速度能获得最大利润,最大利润为457500元.

【解析】

试题分析:(1)函数应用题是高考的常考内容,一般都是根据题意列出函数式,不等式,方程,而其关系式大多在题目里都有提示,我们只要按照题意列出相应式子,然后根据对应的知识解题即可,如本题就是列出不等式,这个不等式的解就是所求范围.(2)求利润最大问题,一般是列出函数式,再借助函数的知识解决,本题就是把利润表示为生产速度的函数,这个函数可以看作为关于的二次函数,从而可以利用二次函数的知识得解.

试题解析:(1)根据题意,4分

,可解得                      6分

因此,所求的取值范围是                      7分

(2)设利润为元,则 11分

时,元.                            13分

因此该工厂应该以每小时6千克的速度生产才能获得最大利润,最大利润为457500元.

14分

考点:(1)列解不等式;(2)函数的最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•长宁区一模)上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求1≤x≤10),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是100(5x+1-
3x
)
元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市长宁区高三上学期教学质量检测理科数学试卷(解析版) 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.

(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;

(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

 

查看答案和解析>>

同步练习册答案