精英家教网 > 高中数学 > 题目详情
7.如图,ABCD是正方形,O是该正方形的中心,P是平面 ABCD 外一点,PO⊥底面ABCD,E是PC的中点.
求证:(1)PA∥平面 BDE;
(2)BD⊥平面 PAC;
(3)若PB与平面PAC所成角为45°,求二面角E-BD-C的平面角.

分析 (1)连接OE,由已知得OE∥AP,由此能证明PA∥平面BDE.
(2)由线面垂直得PO⊥BD,由正方形性质得BD⊥AC,由此能证明BD⊥平面PAC.
(3)根据二面角平面角的定义得到∠COE是二面角E-BD-C的平面角,根据三角形的边角关系进行求解即可.

解答 (1)证明:如图所示,连接OE,
∵O是正方形ABCD的中心,∴OC=OA,
∵E是PC的中点,∴CE=EP,
∴OE∥AP,
∵PA?平面BDE,OE?平面BDE,
∴PA∥平面BDE
(2)证明:∵PO⊥底面ABCD,∴PO⊥BD.
由正方形可得:BD⊥AC,
又PO∩AC=O,∴BD⊥平面PAC.
(3)解:由(2)知BD⊥平面 PAC;
∴∠BPO是PB与平面PAC所成角,即∠BPO=45°,
则OB=OP,设OB=OP=1,则PC=PB=$\sqrt{2}$,
∵E是PC的中点,
∴OE⊥PC,
∵BD⊥平面 PAC,
∴BD⊥OE,
即∠COE是二面角E-BD-C的平面角,
在三角形COE中,∠ECO=∠COE=45°,
∴二面角E-BD-C的大小为45°.

点评 本题主要考查空间线面平行的判断以及二面角的求解,根据线面平行和线面垂直的判定定理以及二面角平面角的定义作出二面角的平面角是解决本题的关键.综合考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=2sin2($\frac{w}{2}$x)+sin(wx-$\frac{π}{6}$)(w>0),且f(x)的最小正周期为π,则实数w=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=alnx+$\frac{1}{2}$x2(a>0),若对任意两个不等的正实数x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥2恒成立,则a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在一梯形中作两条对角线,并联结它们的中点,所得的线段与下底再构成一个梯形,如此重复1975次,最后得到的梯形上底边长恰好与原来的梯形上底边长相等.若原梯形高为h,上底边长为a,求原梯形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k)若α∥β,则k等于(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PD⊥底面ABCD,PD=1,PB=PC=BC=$\sqrt{2}$,点E,F分别是PA,BC的中点.
(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)证明:PB⊥CD;
(Ⅲ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于 A,B两点,则|AB|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ-6cosθ=0,直线l的参数方程为:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),l与C交于P1,P2两点.
(1)求曲线C的直角坐标方程及l的普通方程;
(2)已知P0(3,0),求||P0P1|-|P0P2||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.{an}是各项均不为0的等差数列,{bn}是等比数列,若a1-a${\;}_{7}^{2}$+a13=0,且b7=a7,则b3b11=(  )
A.16B.8C.4D.2

查看答案和解析>>

同步练习册答案