【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加. 现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件发生的概率
(2)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望
【答案】
(1)
(2)
随机变量的分布列为
X | 1 | 2 | 3 | 4 |
P |
【解析】(1)由已知,有所以时间发生的概率为
(2)随机变量的所有可能取值为. 所以随机变量的分布列为
X | 1 | 2 | 3 | 4 |
P |
所以随机变量的数字期望
【考点精析】通过灵活运用互斥事件与对立事件和离散型随机变量及其分布列,掌握互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生;而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)经过点 ,离心率为 ,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P为椭圆C上一动点,点A(3,0)与点P的垂直平分线交y轴于点B,求|OB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数 .
(1)求函数f(x)的定义域;
(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF2=ADBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标1卷)已知椭圆E的中心为坐标原点,离心率为 , E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|= ( )
A.3
B.6
C.9
D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为 b.
(1)求椭圆C的离心率;
(2)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com