精英家教网 > 高中数学 > 题目详情

如图,PA是⊙O的切线,A 为切点,直线 PB交⊙O于D、B两点,交弦AC 于E 点,且AE=4,EC=3,BE=6,PE=6,则 AP=________.


分析:由相交弦定理可得AE•EC=BE•ED,及AE=4,EC=3,BE=6,解得ED,即可得到PD.由PA是⊙O的切线,再由切割线定理可得PA2=PD•PB,即可解出PA.
解答:由相交弦定理可得:AE•EC=BE•ED,∵AE=4,EC=3,BE=6,∴4×3=6ED,解得ED=2.
∵PE=ED+PD=6,∴PD=4.
∵PA是⊙O的切线,∴PA2=PD•PB=4×(6+6)=48,∴PA=4
故答案为
点评:熟练掌握相交弦定理和切割线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=
3
,BC=1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)函数y=|x+1|+|x-1|的最小值是
 

B.(几何证明选讲选做题)如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针转60°到OD,则PD的长为
 

C.(极坐标与参数方程选做题)在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线PA切⊙O于点A,PBM是⊙O的一条割线,如图所示有∠P=∠BAC,若PA=4
7
,BM=9,BC=5,则AB=
35
35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-14,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=,PB=BC,那么BC的长是(    )

图2-14

A.3                B.               C.            D.

查看答案和解析>>

科目:高中数学 来源:2013届吉林长春市高二第二次月考文科数学试卷(解析版) 题型:解答题

已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,   BP的延长线交AC于点E.

⑴求证:FA∥BE;

⑵求证:

【解析】本试题主要是考查了平面几何中圆与三角形的综合运用。

(1)要证明线线平行,主要是通过证明线线平行的判定定理得到

(2)利用三角形△APC∽△FAC相似,来得到线段成比列的结论。

证明:(1)在⊙O中,∵直径AB与FP交于点O ∴OA=OF

 ∴∠OAF=∠F  ∵∠B=∠F  ∴∠OAF=∠B ∴FA∥BE

(2)∵AC为⊙O的切线,PA是弦  ∴∠PAC=∠F

∵∠C=∠C ∴△APC∽△FAC  ∴

 ∵AB=AC  ∴

 

查看答案和解析>>

同步练习册答案