精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界,已知函数

Ⅰ)若是奇函数,求的值.

Ⅱ)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由.

Ⅲ)若函数上是以为上界的函数,求实数的取值范围.

【答案】12)是(3

【解析】试题分析:(1根据奇函数定义得,解得的值2先分离得再根据单调性求值域,最后根据值域判定是否成立3转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围.

试题解析:解:( )由是奇函数,则

,即

)当时,

,满足

上为有界函数.

若函数上是以为上界的有界函数,则有上恒成立

,化简得

上面不等式组对一切都成立,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知棱长为1的正方体ABCD-A1B1C1D1中,点E,F,M分别是AB,AD,AA1的中点,又P,Q分别在线段A1B1A1D1上,且A1P=A1Q=x,0<x<1,设平面MEF∩平面MPQ=l,则下列结论中不成立的是 (  )

A. l∥平面ABCD

B. l⊥AC

C. 平面MEF与平面MPQ不垂直

D. 当x变化时,l不是定直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1 (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ. (Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:

x(单位:千元)

2

4

7

17

30

y(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据 (yi i2=1.15) 参考公式:相关指数R2=1﹣
回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = = x,参考数据:ln40=3.688, =538.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自地面垂直向上发射火箭,火箭的质量为m,试计算将火箭发射到距地面的高度为h时所做的功.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型① 与模型;② 作为产卵数y和温度x的回归方程来建立两个变量之间的关系.

温度x/°C

20

22

24

26

28

30

32

产卵数y/个

6

10

21

24

64

113

322

t=x2

400

484

576

676

784

900

1024

z=lny

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中 ,zi=lnyi
附:对于一组数据(μ1 , ν1),(μ2 , ν2),(μn , νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:

(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1 , C2 , C3 , C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为 .,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S4=﹣24,a1+a5=﹣10. (Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤﹣24},求集合A中的所有元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABCA1B1C1中,AC3BC4AB5AA14,点DAB的中点.

(1)求证:AC1平面CDB1

(2)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

同步练习册答案