精英家教网 > 高中数学 > 题目详情
如果函数f(x)=
2
2x+1
+a是奇函数,则a的值是(  )
A、1B、2C、-1D、-2
考点:函数奇偶性的判断
专题:计算题,函数的性质及应用
分析:由奇函数的性质得,f(0)=0,即可得到a的值,再检验即可.
解答: 解:函数f(x)=
2
2x+1
+a是奇函数,
定义域为R,且有f(0)=0,
即有1+a=0,解得a=-1,
检验:f(x)=
2
2x+1
-1=
1-2x
1+2x

f(-x)+f(x)=
1-2-x
1+2-x
+
1-2x
1+2x
=0,
则f(x)为奇函数.
故选C.
点评:本题考查函数的奇偶性的判断,考查已知奇偶性,求参数,注意运用性质,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2x-e),点P(e,f(e))为函数的图象上一点.
(1)求导函数f′(x)的解析式;
(2))求f(x)=ln(2x-e)在点P(e,f(e))处的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≥f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:
①f(0)=0;②f(
x
3
)=
1
2
f(x)f(
x
3
)=
1
2
f(x);③f(1-x)=1-f(x),
则f(
1
6
)=
 
;f(
1
4
)+f(
1
7
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线3x+4y-3=0与直线6x+my+14=0平行,求这两条平行线之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(
π
3
x+φ)(x∈R,A>0,0<φ<
π
2
),y=f(x)的部分图象如图所示,P、Q分别为该图象相邻的最高点和最低点,点P的坐标为(1,A).
(1)求f(x)的最小正周期及φ的值;
(2)若点M的坐标为(1,0),向量
MP
MQ
的夹角为
3
,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(z)=1-
.
z
,z1=2+3i,z2=2+i,则|f(z1+z2)|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log
1
3
(x-3)
的定义域为(  )
A、(3,+∞)
B、[3,+∞)
C、(3,4]
D、(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程x2+x•sin2θ-sinθ•cotθ=0的两根为α、β且0<θ<2π,若数列1,(
1
α
+
1
β
),(
1
α
+
1
β
2…的前2008项和为0,则θ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2
1
0
f(x)dx,则
1
0
f(x)dx=
 

查看答案和解析>>

同步练习册答案