A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
分析 函数ex,ln(x+1)在[0,+∞)上都为增函数,从而得到f(x)在[0,+∞)上为增函数,从而由f(x)为偶函数及f(a)<f(a-1)得到f(|a|)<f(|a-1|),从而得到|a|<|a-1|,解该不等式即得a的取值范围.
解答 解:x>0时,f(x)=ex+ln(x+1),ex,ln(x+1)在[0,+∞)上都是增函数,
∴f(x)在[0,+∞)上单调递增;
由已知条件知f(|a|)<f(|a-1|)得|a|<|a-1|;
∴解得a<$\frac{1}{2}$.
∴a的取值范围是(-∞,$\frac{1}{2}$).
故选:B.
点评 考查指数函数、对数函数的单调性,f(x),g(x)在区间I上都为增函数时,f(x)+g(x)在I上也是增函数,偶函数的定义,以及增函数定义的运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{2}$-y2=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (-1,0) | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com