精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinx(sinx+cosx).
(1)求f(x)的最小正周期和最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若f()=1,a=2 , 求三角形ABC面积的最大值.

【答案】解:(1)f(x)=sin2x+sinxcosx=cos2x+sin2x=sin(2x﹣)+
∴f(x)的最小正周期T==π,f(x)的最大值是
(2)∵f()=sin(A﹣)+=1,∴sin(A﹣)=,∴A=
∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.
∴S=bcsinA=bc≤3
∴三角形ABC面积的最大值是3
【解析】(1)利用二倍角公式化简f(x);
(2)求出A,根据余弦定理和基本不等式得出bc的最大值,代入面积公式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一块平行四边形绿地ABCD,经测量BC=2百米,CD=1百米,∠BCD=120°,拟过线段BC上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将绿地分为面积之比为1:3的左右两部分,分别种植不同的花卉,设EC=x百米,EF=y百米.

(1)当点F与点D重合时,试确定点E的位置;
(2)试求x的值,使路EF的长度y最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE=
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}、等差数列{bn},满足a1>0,b1=a1﹣1,b2=a2 , b3=a3且数列{an}唯一.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.

(Ⅰ)求抛物线C的方程;

(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1)若,求点D的坐标;

(2)问是否存在实数α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,E,F分别是棱AB,BC的中点,EF∩BD=G.求证:平面B1EF⊥平面BDD1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C、D是函数y=sin(ωx+φ)(ω>0,0<φ<)一个周期内的图象上的四个点,如图所示,A(﹣ , 0),B为y轴的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,在x轴方向上的投影为
(1)求函数f(x)的解析式及单调递减区间;
(2)将函数f(x)的图象向左平移得到函数g(x)的图象,已知g(α)= , α∈(﹣ , 0),求g(α+)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为

查看答案和解析>>

同步练习册答案