精英家教网 > 高中数学 > 题目详情

【题目】某车间生产甲、乙两种产品,已知制造一件甲产品需要种元件5个,种元件2个,制造一件乙种产品需要种元件3个,种元件3个,现在只有种元件180个,种元件135个,每件甲产品可获利润20元,每件乙产品可获利润15元,试问在这种条件下,应如何安排生产计划才能得到最大利润?

【答案】甲产品生产30件,乙产品生产15件的条件下,才能得到最大利润825.

【解析】

画出图表,得到约束条件,列出目标函数,利用线性规划知识求解即可.

依题意有如下表格:

利润

甲产品

5

2

20(元/件)

乙产品

3

3

15(元/件)

设生产甲产品件,设生产乙产品件,

故有如下不等式组:,利润,如图:

,解得

,经过可行域的时,取得最大值:此时

故在甲产品生产30件,乙产品生产15件的条件下,才能得到最大利润825.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑中,平面,且,过点分别作于点于点,连结,当的面积最大值时, .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为进行爱国主义教育,在全校组织了一次有关钓鱼岛历史知识的竞赛.现有甲、乙两队参加钓鱼岛知识竞赛,每队3人,规定每人回答一个问题,答对为本队赢得1分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,用ξ表示甲队的总得分.

)求随机变量ξ的分布列和数学期望;

)用表示甲、乙两个队总得分之和等于3”这一事件,用表示甲队总得分大于乙队总得分这一事件,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(b为常数)

(1)若b=1,求函数H(x)=f(x)﹣g(x)图象在x=1处的切线方程;

(2)若b2,对任意x1,x2∈[1,2],且x1x2,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小军的微信朋友圈参与了微信运动,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:

5860 8520 7326 6798 7325 8430 3216 7453 11754 9860

8753 6450 7290 4850 10223 9763 7988 9176 6421 5980

男性好友走路的步数情况可分为五个类别(说明:a~b表示大于等于a,小于等于b

A0~2000步)1人, B2001-5000步)2人, C5001~8000步)3人,

D8001-10000步)6人, E10001步及以上)8

若某人一天的走路步数超过8000步被系统认定为健康型否则被系统认定为进步型

I)访根据选取的样本数据完成下面的2×2列联表,并根据此判断能否有95%以上的把握认为认定类型性别有关?

健康型

进步型

总计

20

20

总计

40

(Ⅱ)如果从小军的40位好友中该天走路步数超过10000的人中随机抽取3人,设抽到女性好友X人,求X的分布列和数学期望

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图抛物线的焦点为为抛物线上一点(轴上方),点到轴的距离为4.

1)求抛物线方程及点的坐标;

2)是否存在轴上的一个点,过点有两条直线,满足交抛物线两点.与抛物线相切于点不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示的平面图形中,为矩形,为线段的中点,点是以为圆心,为直径的半圆上任一点(不与重合),以为折痕,将半圆所在平面折起,使平面平面,如图2为线段的中点.

1)证明:.

2)若锐二面角的大小为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,平面平面,四边形是菱形,.

1)若,证明:

2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案