【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
【答案】(1) (2)
【解析】甲校的男教师用A、B表示,女教师用C表示,乙校的男教师用D表示,女教师用E、F表示,
(1)根据题意,从甲校和乙校报名的教师中各任选1名,
有(AD),(AE),(AF),(BD),(BE),(BF),(CD),(CE),(CF),共9种;
其中性别相同的有(AD)(BD)(CE)(CF)四种;
则选出的2名教师性别相同的概率为P=;
(2)若从报名的6名教师中任选2名,
有(AB)(AC)(AD)(AE)(AF)(BC)(BD)(BE)(BF)(CD)(CE)(CF)(DE)(DF)(EF)共15种;
其中选出的教师来自同一个学校的有6种;
则选出的2名教师来自同一学校的概率为P=.
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形中,AB∥CD,,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.
(Ⅰ)求证:BC⊥平面DBE;
(Ⅱ)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )= .
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn表示数列{an}的前n项和,若对任意的n∈N*满足an+1=an+a2 , 且a3=2,则S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com