精英家教网 > 高中数学 > 题目详情

【题目】某班级共派出个男生和个女生参加学校运动会的入场仪式,其中男生倪某为领队.入场时,领队男生倪某必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有种排法;入场后,又需从男生(含男生倪某)和女生中各选一名代表到主席台服务,共有种选法.(1)试求; (2)判断的大小(),并用数学归纳法证明.

【答案】(1);(2)见解析.

【解析】分析:(1)根据队里男生甲必须排第一个,然后女生整体排在男生的前面,排成一路纵队入场,可得根据从男生和女生中各选一名代表到主席台服务,可得

(2)根据,猜想再用数学归纳法证明,第二步的证明利用分析法证明.

详解:(1).

(2)因为,所以

,由此猜想:当时,都有,即.

下面用数学归纳法证明).

时,该不等式显然成立.

②假设当时,不等式成立,即,.

则当时,

要证当时不等式成立.只要证:

只要证:..

,因为,所以上单调递减,

从而,而,所以成立.

则当时,不等式也成立.

综合①、②得原不等式对任意的均成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC边上的中线AM=2 ,高线AH= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,是棱的中点,点 在棱上,且为实数).

(1)求二面角的余弦值;

(2)当时,求直线与平面所成角的正弦值的大小;

(3)求证:直线与直线不可能垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+ sin2x.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f( )= ,△ABC的面积为3 ,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.

(1)打进的电话在响5声之前被接的概率是多少?

(2)打进的电话响4声而不被接的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从6名干部中(其中男生4人,女生2人)选3人参加学校的义务劳动.
(1)设所选3人中女生人数为ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被选中的概率;
(3)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处取得极值.

(1)求的单调区间;

(2)讨论的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案