精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

已知=12sin(x+)cosx-3,x∈[o,].

(1)求的最大值、最小值;

(Ⅱ)CD为△ABC的内角平分线,已知AC=max,BC=,CD=2,求∠C.

【答案】( Ⅰ) max =6 , min =3.

( Ⅱ ) C=.

【解析】分析第一问先对函数解析式进行化简,首先应用正弦的和角公式拆,之后应用正余弦的倍角公式降次升角,之后应用辅助角公式化简之后将整体角的取值范围求出,再判断其最值,第二问先将第一问求的结果代入,之后借助于正余弦定理找出对应的量,求得结果.

详解:( Ⅰ ) =6sin ( 2 x + )

在( 0 ,)上单调递增,( )上单调递减

max =6 , min =3

( Ⅱ )在 ΔADC 中,=,在 ΔBDC中,=

∵sin∠ADC=sin∠ BDC , AC=6 , BC =3

∴ AD=2BD 在ΔBCD中, BD2 =17-12cos,

在ΔACD中, AD2=44-24cos=68-48cos

∴cos=,即 C=( Ⅰ) max =6 , min =3.

( Ⅱ ) C=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,斜率为正的直线过点交抛物线于两点,满足.

1)求直线的斜率;

2)过焦点垂直的直线交抛物线于两点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数)。曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,则实数c的取值范围是(  )

A.(0,1]B.[1,+∞)

C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生的数学测试成绩的频率分布直方图如图所示分数不低于a即为优秀如果优秀的人数为20a的估计值是(  )

A. 130 B. 140 C. 133 D. 137

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,试求的单调区间;

(2)若内有极值,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是等腰梯形,.

(1)证明:平面平面

(2)点E是棱PC上一点,且平面,求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取了40辆汽车在经过路段上某点时的车速(km/h),现将其分成六段: ,后得到如图所示的频率分布直方图.

(Ⅰ)现有某汽车途经该点,则其速度低于80km/h的概率约是多少?

(Ⅱ)根据直方图可知,抽取的40辆汽车经过该点的平均速度约是多少?

(Ⅲ)在抽取的40辆且速度在(km/h)内的汽车中任取2辆,求这2辆车车速都在(km/h)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证:AC⊥平面PDO;

(2)求三棱锥P-ABC体积的最大值;

(3)若,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

同步练习册答案