精英家教网 > 高中数学 > 题目详情
(2008•湖北模拟)在△OAB中,O为坐标原点,A(-1,cosθ),B(sinθ,1),θ∈[0,
π
2
]
.(1)若|
OA
+
OB
|=|
OA
-
OB
|,则θ
=
π
4
π
4
,(2)△OAB的面积最大值为
3
4
3
4
分析:(1)由题设|
OA
+
OB
|=|
OA
-
OB
|,知
(sinθ-1)2+(1+cosθ)2
=
(-1-sinθ)2+(cosθ-1)2
,整理,得sinθ=cosθ,由收费能求出θ.
(2)在直角坐标系里,△OAB的面积=1-
1
2
(sinθ×1)-
1
2
[cosθ×(-1)]-
1
2
(1-sinθ)(1+cosθ),利用二倍角的正弦函数公式得到一个角的正弦函数,根据正弦函数的值域及角度的范围即可得到三角形面积最大值.
解答:解:(1)∵A(-1,cosθ),B(sinθ,1),θ∈[0,
π
2
]

OA
+
OB
=(sinθ-1,1+cosθ)

OA
-
OB
=(-1-sinθ,cosθ-1)

∵|
OA
+
OB
|=|
OA
-
OB
|,
(sinθ-1)2+(1+cosθ)2
=
(-1-sinθ)2+(cosθ-1)2

整理,得sinθ=cosθ,
∴θ=
π
4

(2)S△OAB=1-
1
2
(sinθ×1)-
1
2
[cosθ×(-1)]-
1
2
(1-sinθ)(1+cosθ)
=
1
2
+
1
2
sincosθ=
1
2
+
1
4
sin2θ,
因为θ∈(0,
π
2
],2θ∈(0,π],
所以当2θ=π即θ=
π
2
时,sin2θ最小,
三角形的面积最大,最大面积为
3
4
点评:本题考查平面向量的综合运用,解题时要认真审题,仔细解答,注意二倍角公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)若等比数列的各项均为正数,前n项之和为S,前n项之积为P,前n项倒数之和为M,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为g(n)=
k
n+1
(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案