精英家教网 > 高中数学 > 题目详情
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.
;⑵见解析。
解: 用ABC分别表示事件甲、乙、丙面试合格.由题意知ABC相互独立,
.------------------------------------------------------2分
(1)至少有1人面试合格的概率是
----------------------4分
(2)的可能取值为0,1,2,3.-------- --------------------------------------------------5分


---------------------------6分     
=
=--------------------------------7分
---------------------8分
----------------------9分
的分布列是

0
1
2
3





的期望----------------------------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知时刻一质点在数轴的原点,该质点每经过秒就要向右跳动一个单位长度,已知每次跳动,该质点向左的概率为,向右的概率为
(1)求秒时刻,该质点在数轴上处的概率.
(2)设秒时刻,该质点在数轴上处,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床                                          B机床
次品数ξ1
0
1
2
3
概率P
0.7
0.2
0.06
0.04
次品数ξ2
0
1
2
3
概率P
0.8
0.06
0.04
0.10
 
问哪一台机床加工质量较好

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)用一枚质地均匀的硬币,甲、乙两人做抛掷硬币游戏,甲抛掷4次,记正面朝上的次为;乙抛掷3次,记正面朝上的次为.(Ⅰ)分别求的期望;(Ⅱ)规定:若>,则甲获胜;否则,乙获胜.求甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对甲、乙的学习成绩进行抽样分析,各抽门功课,得到的观测值如下:

问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)甲、乙两间商店购进同一种商品的价格均为每件30元,销售价均为每件50元.根据前5年的有关资料统计,甲商店这种商品的年需求量服从以下分布:

10
20
30
40
50

0.15
0.20
0.25
0.30
0.10
乙商店这种商品的年需求量服从二项分布
若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理;乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推.今年甲、乙两间商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在1,2,3…,9,这9个自然数中,任取3个数.
(Ⅰ)求这3个数中,恰有一个是偶数的概率;          
(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2)。求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某电视台举办的《上海世博会知识有奖问答比赛》中,甲、乙、丙三人同时回答一道问题,已知甲回答对这道题的概率是
3
4
,甲、丙两人都回答错的概率是
1
12
,乙、丙两人都回答对的概率是
1
4
,且三人答对这道题的概率互不影响.
(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)求答对该题的人数ξ的分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案