精英家教网 > 高中数学 > 题目详情

在数列{an}中,数学公式,当n≥2时,有3an-2an-1+n+2=0,设bn=an+n+1.
(I)求b1,b2
(II)证明数列{bn-1}是等比数列;
(III)设数学公式,求数列{cn}的前n项和Tn

解:(I)∵,bn=an+n+1∴
当n=2时,3a2-2a1+4=0可得

(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1)
,n≥2即


(III)由(I)可得
∴2bn-1+1=3bn,所以
==
=
分析:(I)由bn=an+n+1及3an-2an-1+n+2=0把n=1,2分别代入可求
(II)由3an-2an-1+n+2=0得,3(an+n)=2(an-1+n-1),,即,从而可证
(III)由(I)可得从而可求,则=,从而可利用裂项求和.
点评:本题目主要考查了利用数列的递推公式求解数列的通项公式,而定义法是证明数列为等比(等差)数列的常见方法,裂项求和是数列求和的重要方法,要注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知点(n,an)(n∈N*)都在直线3x-y-24=0上,那么在数列an中有a7+a9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=an+ln(1+
1n
)
,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

14、在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项an=
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中a1=
1
2
a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出数列{an}的通项公式;
(2)设bn=
anan+1
an
+
an+1
,求证:对?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),设S2009为其前2009项的和,则当数列{xn}的周期为3时,S2009=
1339+a
1339+a

查看答案和解析>>

同步练习册答案