精英家教网 > 高中数学 > 题目详情
9.已知y=f(x)是定义在R上的偶函数,其对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,则当f(sinx)>f(cosx)时,x的取值范围(  )
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

分析 根据偶函数的性质得f(sinx)>f(cosx)?f(|sinx|)>f(|cosx|),由f(x)对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,知f(x)在(-∞,0]上单调递减,所以f(x)在[0,+∞)上单调递增,据单调性即可去掉不等式中的符号“f”.转化后解不等式即可求得所求的范围.

解答 解:因为f(x)为偶函数,
所以f(sinx)>f(cosx)?f(|sinx|)>f(|cosx|)
又由f(x)对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,知f(x)在(-∞,0]上单调递减,所以f(x)在[0,+∞)上单调递增,
所以|sinx|>|cosx|,
所以cos2x<0,
解得x∈(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z.
故选:D.

点评 本题考查函数奇偶性、单调性及其应用,属中档题,解决本题的关键是根据条件判断出函数的单调性,再由奇偶性把问题转为到区间[0,+∞)上解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.
(1)求a、b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a,}\overrightarrow{b}$满足$|\overrightarrow{a}|$=$\sqrt{3}$,$|\overrightarrow{b}|$=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$2\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{$\frac{1}{4{n}^{2}}$}的前n项和为Tn,求证:$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,AB=AC=$\sqrt{5}$,BC=2,点D是AC的中点,点E在AB上,且$\overrightarrow{BD}$$•\overrightarrow{CE}$=-$\frac{3}{8}$,则$\overrightarrow{DE•}$$\overrightarrow{BC}$=(  )
A.-$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.各项为正数的等比数列{an}中,a1+a4=27,Sa6=189,则q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若B=45°,c=3$\sqrt{2}$,b=2$\sqrt{3}$,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sinx•cosx>0,则x在一或三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在四棱锥S-ABCD中,四边形ABCD是菱形,SD⊥平面ABCD,P为SB的中点,Q为BD上一动点.AD=2,SD=2,∠DAB=$\frac{π}{3}$.
(Ⅰ)求证:AC⊥PQ;
(Ⅱ)当PQ∥平面SAC时,求四棱锥P-AQCD的体积.

查看答案和解析>>

同步练习册答案