精英家教网 > 高中数学 > 题目详情

【题目】如图是某市31日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择31日至313日中的某一天到达该市,并停留2天.

Ⅰ)求31日到14日空气质量指数的中位数;

Ⅱ)求此人到达当日空气重度污染的概率;

Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

【答案】1103.52335日开始连续三天的空气质量指数方差最大

【解析】解:(1)31日至313日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率为

(2)根据题意,事件此人在该市停留期间只有1天空气重度污染等价于此人到达该市的日期是4日或5日或7日或8,所以此人在该市停留期间只有1天空气重度污染的概率为

(3)35日开始连续三天的空气质量指数方差最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料.用5个工时;生产一件产品B需要甲材料,乙材料 ,用3个工时。生产一件产品A的利润为2100元,生产一件产品B的利润为900元,该企业现有甲材料150,乙材料,则在不超过600个工时的条件下,生产产品A,产品B的利润之和的最大值为______________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴非负轴为极轴的极坐标系中,曲线(为极角).

(1)将曲线化为极坐标方程,当时,将化为直角坐标方程;

(2)若曲线相交于一点,求点的直角坐标使到定点的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数(其中).

(1)当时,求不等式的解集;

(2)若关于的不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若直线与曲线的交点的横坐标为,且,求整数所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆M:长轴上的两个顶点为,点P为椭圆M上除外的一个动点,若,则动点Q在下列哪种曲线上运动( )

A. B. 椭圆 C. 双曲线 D. 抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第5,6两组市民中有3名女性,组织方要从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的下顶点为,右顶点为,离心率,抛物线的焦点为是抛物线上一点,抛物线在点处的切线为,且.

(1)求直线的方程;

(2)若与椭圆相交于两点,且,求的方程.

查看答案和解析>>

同步练习册答案