精英家教网 > 高中数学 > 题目详情

已知数学公式=(1,1,0),数学公式=(1,1,1),若数学公式=数学公式1+数学公式2,且数学公式1数学公式数学公式2数学公式,试求数学公式1数学公式2

解:∵1
∴令1=(λ,λ,0),2=-1=(1-λ,1-λ,1),
又∵2
2=(1,1,0)•(1-λ,1-λ,1)=1-λ+1-λ=2-2λ=0,
∴λ=1,即1=(1,1,0),2=(0,0,1).
分析:本题求空间向量的坐标,可利用所给的位置关系利用向量数乘的概念设出所求向量1的坐标,再解出向量2的坐标,然后根据2,由数量积为0建立关于参数的方程,求参数即可求得所求向量的坐标.
点评:本题考点是微量的数量积判断向量的共线与垂直,考查用利用共线的条件用待定系数法的技巧设出要求的向量,以及根据所给的垂直关系建立方程求参数的能力,本题用共线的条件表示出向量的坐标,由于引入的未知数较少,给后续的解题带来方便,此技巧值得总结,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={-1,1},N={x∈Z|
1
2
<2x+1<4},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)、试问此次参赛学生总数约为多少人?

(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可共查阅的(部分)标准正态分布表

0

1

2

3

4

5

6

7

8

9

1.2 1.3 1.4 1.9 2.0 2.1

0.8849 0.9032 0.9192 0.9713 0.9772 0.9821

0.8869 0.9049 0.9207 0.9719 0.9778 0.9826

0.888 0.9066 0.9222 0.9726 0.9783 0.9830

0.8907 0.9082 0.9236 0.9732 0.9788 0.9834

0.8925 0.9099 0.9251 0.9738 0.9793 0.9838

0.8944 0.9115 0.9265 0.9744 0.9798 0.9842

0.8962 0.9131 0.9278 0.9750 0.9803 0.9846

0.8980 0.9147 0.9292 0.9756 0.9808 0.9850

0.8997 0.9162 0.9306 0.9762 0.9812 0.9854

0.9015 0.9177 0.9319 0.9767 0.9817 0.9857

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a = (1,1),向量b与向量a 的夹角为,且a?b = -1.

   (1)求向量b

   (2)若向量bq =(1,0)的夹角为,向量p = ,其中A,C为△ABC的内角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a = (1,1),向量b与向量a 的夹角为,且a?b = -1.

   (1)求向量b

   (2)若向量bq =(1,0)的夹角为,向量p = ,其中A,C为△ABC的内角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

同步练习册答案