精英家教网 > 高中数学 > 题目详情

已知点P在曲线C:y=(x>1)上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xAxB,记f(t)=xA·gxB

(1)求f(t)的解析式;

(2)设数列{an}满足a1=1,an=f()(n≥2且x∈N*),求数列{an}的通项公式;

(3)在(2)的条件下,当1<k<3时,证明不等式a1+a2+…+an

答案:
解析:

  解:(1)

  切线方程为y=kx联立得:

  ,令y=0得:xB=2t

  ∴

  (2)由

  两边取倒数得:

  ∴

  ∴是以为首项,为公比的等比数列(时)

  或是各项为0的常数列(k=3时),此时an=1

  

  当k=3时也符合上式

  ∴

  (3)作差得

  其中

  由于1<k<3,∴

  ∴

  

  

  

  当


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在曲线C:y=
1
x
(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1
)
(n≥2),数列{bn}满足bn=
1
an
-
k
3
,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省宁波市余姚中学高三(上)第二次质量检测数学试卷(理科)(解析版) 题型:解答题

已知点P在曲线C:y=(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=(n≥2),数列{bn}满足bn=,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源:2010年四川省自贡市高考数学二模试卷(理科)(解析版) 题型:解答题

已知点P在曲线C:y=(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=(n≥2),数列{bn}满足bn=,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

同步练习册答案