精英家教网 > 高中数学 > 题目详情
2、若集合A={-1,a2},B={2,4},则“a=-2”是“A∩B={4}”的
充分不必要
条件.
分析:“a=-2”时,确定集合A,求出A∩B,看是否有“}”;反之“A∩B={4}”时,a2=4可求出a
解答:解:a=-2时,A={-1,4},所以A∩B={4},即“a=-2”?“A∩B={4}”
反之:A∩B={4}时,a2=4,a=±2,即不能推出“a=-2”
所以“a=-2”是“A∩B={4}”的充分不必要条件
故答案为:充分不必要
点评:本题考查充要条件的判断,属基本题型的考查,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建模拟)若集合A={x|x2-x-2<0},B={x|-2<x<a},则“A∩B≠∅”的充要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,2,3,4,10},B={1,},设x∈A,y∈B,试给出一个对应法则f,使f:A→B是从集合A到集合B的一个映射,则映射f:________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黑龙江省绥化市庆安三中高三(上)第一次考试数学试卷(文科)(解析版) 题型:选择题

若集合A={1,2,3,4},B={x∈N||x|≤2},则A∩B=( )
A.{1,2,3,4}
B.{-2,-1,0,1,2,3,4}
C.{1,2}
D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省太原五中高三(下)4月月考数学试卷(文科)(解析版) 题型:选择题

若集合A={1,2,3,4},B={x∈N||x|≤2},则A∩B=( )
A.{1,2,3,4}
B.{-2,-1,0,1,2,3,4}
C.{1,2}
D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省惠州市高三第三次调研数学试卷(理科)(解析版) 题型:选择题

若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案