精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

【答案】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,
b=1,

(Ⅱ)由(Ⅰ)知
设x1<x2则f(x1)﹣f(x2)= =
因为函数y=2x在R上是增函数且x1<x2∴f(x1)﹣f(x2)= >0
即f(x1)>f(x2
∴f(x)在(﹣∞,+∞)上为减函数
(III)f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,
所以f(t2﹣2t)+f(2t2﹣k)<0
等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式
所以k的取值范围是k<﹣
【解析】(Ⅰ)利用奇函数定义f(x)=﹣f(x)中的特殊值f(0)=0求b的值;(Ⅱ)设x1<x2然后确定f(x1)﹣f(x2)的符号,根据单调函数的定义得到函数f(x)的单调性;(III)结合单调性和奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.
【考点精析】通过灵活运用函数奇偶性的性质和二次函数的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断并证明f(x)的奇偶性;
(2)求不等式 ≤f(x) 的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,则满足f(f(a))=2fa的a的取值范围是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+ )x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.假设需要新建n个桥墩.
(1)写出n关于x的函数关系式;
(2)写出y关于x的函数关系式;
(3)当m=640米时,需新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)为定义在R奇函数,当x>0时,f(x)=﹣2x2+4x+1,
(1)求:当x<0时,f(x)的表达式;
(2)用分段函数写出f(x)的表达式;
(3)若函数h(x)=f(x)﹣a恰有三个零点,求a的取值范围(只要求写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为 ,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn=
(1)证明:数列{bn}是等差数列;
(2)令cn= ,{cn}的前n项和为Tn , 用数学归纳法证明Tn (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为2的三棱柱ABC﹣A1B1C1中,侧面A1ACC1⊥底面ABC,且∠A1AC= ,点O为AC的中点.

(1)求证:AC⊥平面A1OB;
(2)求二面角B1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以为顶点的六面体中, 均为等边三角形,且平面平面 平面 .

(1)求证: 平面

(2)求此六面体的体积.

查看答案和解析>>

同步练习册答案