精英家教网 > 高中数学 > 题目详情
对于任意两实数a,b,定义运算“⊕”如下:a⊕b=
a,a≤b
b,a>b
,设函数f(x)=log
1
2
(3x-2)⊕log2x,若f(n)=-1,求实数n的值.
考点:对数的运算性质
专题:函数的性质及应用
分析:需要分类讨论,确定函数f(x)的解析式,再代入求出n的值,
解答: 解:∵f(x)=log
1
2
(3x-2)⊕log2x,
3x-2>0
x>0
,解得x>
2
3

即函数f(x)的定义域为(
2
3
,+∞)
当log
1
2
(3x-2)=-log2x(3x-2)>log2x,
1
3x-2
>x,解得
2
3
<x<1,
∴f(x)=log
1
2
(3x-2)⊕log2x=log2x,
∵f(n)=-1,
∴log2n=-1,解得n=
1
2
(舍去)
当log
1
2
(3x-2)=-log2x(3x-2)≤log2x,
1
3x-2
≤x,解得x≥1,
∴f(x)=log
1
2
(3x-2)⊕log2x=log
1
2
(3x-2),
∵f(n)=-1,
∴log
1
2
(3n-2)=-1,解得n=
4
3

综上所述,实数n的值为
4
3
点评:本题考查了新定义?及其对数函数的单调性,考查了计算能力,以及分类讨论的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,|AB|=4,|AD|=3,|AA1|=5,∠BAD=60°,∠BAA1=∠DAA1=60°.
(1)求AC1与AB所成角的余弦值;
(2)求
AC1
AB
上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=
3
,且
AO
OB
,设
OC
=m
OA
+n
OB

(1)若C点满足
AC
=t
CB
,求m+n的值;
(2)若C满足∠AOC=30°,求
m
n
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+b)cosC+ccosB=0.
(2)求∠C;
(2)若a、b、c成等差数列,b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-1)x+a为偶函数.
(1)求a的值;
(2)设函数,g(x)=
f(x)
x
,当x∈[1,+∞]时,不等式g(x)+f(m)+2m≥5恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列三角函数式的值.
(1)
sin47°-sin17°cos30°
cos17°

(2)若tanα=2,求
sin2α
1+cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的焦点为F(-c,0),F′(c,0),c>0,过F且平行于双曲线渐近线的直线与抛物线y2=4cx交于点P,若P在以FF′为直径的圆上,则该双曲线的离心率平方为(  )
A、
3+
5
2
B、
5
C、
5
-1
2
D、
1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
(cos4x-sin4x)+
3
sinxcosx.
(1)化简f(x)为f(x)=Asin(wx+φ)的形式;
(2)若
π
2
<α<π,
π
4
<β<
3
,f(
α
2
)=
1
2
,f(
β
2
-
π
6
)=
3
2
,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求以双曲线
x2
4
-
y2
5
=1的焦点为焦点抛物线C的标准方程;
(2)斜率为1的直线l经过抛物线C的焦点,且与抛物线相交于A、B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案