精英家教网 > 高中数学 > 题目详情

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

【答案】(1;(2;(3

【解析】试题分析:(1)根据频率直方图的数据结合中位数的定义即可求解;(2)根据的取值范围分类讨论即可求解;(3)首先求得的取值范围,再结合频率直方图即可求解.

试题解析:(1)由频率直方图得:需求量为的频率

需求量为的频率,需求量为的频率

则中位数;(2每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元,

时, ,当时, ;(3利润不少于4800元,,解得

由(1)知利润不少于4800元的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与圆关于直线对称,且点在圆上.

1判断圆与圆的位置关系;

2为圆上任意一点,三点不共线,的平分线,且交. 求证:的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

1的值;

2,试判断的单调性不需证明并求使不等式恒成立的t的取值范围;

3,,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若用斜二测画法把一个高为10 cm的圆柱的底面画在xOy′平面上,则该圆柱的高应画成(  )

A. 平行于z′轴且长度为10 cm

B. 平行于z′轴且长度为5 cm

C. z′轴成45°且长度为10 cm

D. z′轴成45°且长度为5 cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中中点.

(1)求证:平面

(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置, 指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见右表.

例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)已知顾客甲消费后获得次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为,每次转动转盘的结果相互独立,设为顾客甲转动转盘指针落在区域边界的次数,的数学期望方差.求的值;

(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为(元.求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题“奇函数的图像关于原点对称”的否命题__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是 (  )

A. 多面体至少有四个面

B. 九棱柱有9条侧棱9个侧面侧面为平行四边形

C. 长方体、正方体都是棱柱

D. 三棱柱的侧面为三角形

查看答案和解析>>

同步练习册答案