5£®ÉèͬʱÂú×ãÌõ¼þ£º¢Ù$\frac{{b}_{n}+{b}_{n+2}}{2}$¡Ýbn+1£»¢Úbn¡ÜM£¨n¡ÊN*£¬MÊÇÓëÎ޹صij£Êý£©µÄÎÞÇîÊýÁÐ{bn}½Ð¡°ºêʵ¡±ÊýÁУ®ÒÑÖªÊýÁÐ{an}µÄÇ°ÏîºÍSnÂú×㣺Sn=$\frac{a}{a-1}$£¨an-1£©£¨aΪ³£Êý£¬ÇÒa¡Ù0£¬a¡Ù1£©£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=$\frac{2{S}_{n}}{{a}_{n}}$+1£¬ÈôÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£¬²¢Ö¤Ã÷´Ëʱ{$\frac{1}{{b}_{n}}$}Ϊ¡°ºêʵ¡±ÊýÁУ®

·ÖÎö £¨1£©µ±n¡Ý2ʱ£¬${a_n}={S_n}-{S_{n-1}}=\frac{a}{a-1}{a_n}-\frac{a}{a-1}{a_{n-1}}$$\frac{a_n}{{{a_{n-1}}}}=a$£¬´Ó¶ø¿ÉµÃ{an}ÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÓÉ´Ë¿ÉÇó{an}µÄͨÏʽ£»
£¨2£©È·¶¨ÊýÁÐ{bn}µÄͨÏÀûÓÃ{bn}ΪµÈ±ÈÊýÁУ¬¿ÉÇóaµÄÖµ£»ÑéÖ¤¡°ºêʵ¡±ÊýÁеÄÁ½¸öÌõ¼þ£¬¼´¿ÉÖ¤µÃ£®

½â´ð ½â£º£¨1£©ÒòΪ${S_1}=\frac{a}{a-1}£¨{a_1}-1£©$£¬ËùÒÔa1=a
µ±n¡Ý2ʱ£¬${a_n}={S_n}-{S_{n-1}}=\frac{a}{a-1}{a_n}-\frac{a}{a-1}{a_{n-1}}$$\frac{a_n}{{{a_{n-1}}}}=a$£¬
¼´{an}ÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
ËùÒÔ${a_n}=a•{a^{n-1}}={a^n}$£»         ¡­£¨4·Ö£©
£¨2£©ÓÉ£¨1£©Öª£¬${b_n}=\frac{{2¡Á\frac{a}{a-1}£¨{a_n}-1£©}}{a_n}+1=\frac{{£¨3a-1£©{a_n}-2a}}{{£¨a-1£©{a_n}}}$£¬
Èô{bn}ΪµÈ±ÈÊýÁУ¬ÔòÓÐ${b_2}^2={b_1}•{b_3}$£¬¶øb1=3£¬${b_2}=\frac{3a+2}{a}$£¬${b_3}=\frac{{3{a^2}+2a+2}}{a^2}$
¹Ê${£¨\frac{3a+2}{a}£©^2}=3•\frac{{3{a^2}+2a+2}}{a^2}$£¬½âµÃ$a=\frac{1}{3}$¡­£¨7·Ö£©
ÔÙ½«$a=\frac{1}{3}$´úÈëµÃ£º${b_n}={3^n}$£¬ÆäΪµÈ±ÈÊýÁУ¬
ËùÒÔ$a=\frac{1}{3}$³ÉÁ¢¡­£¨8·Ö£©
ÓÉÓÚ¢Ù$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}=\frac{{\frac{1}{3^n}+\frac{1}{{{3^{n+2}}}}}}{2}£¾\frac{{2\sqrt{\frac{1}{3^n}•\frac{1}{{{3^{n+2}}}}}}}{2}=\frac{1}{{{3^{n+1}}}}=\frac{1}{{{b_{n+1}}}}$¡­£¨10·Ö£©
£¨»ò×ö²î¸ü¼òµ¥£ºÒòΪ$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}-\frac{1}{{{b_{n+1}}}}=\frac{5}{{{3^{n+2}}}}-\frac{1}{{{3^{n+1}}}}=\frac{2}{{{3^{n+2}}}}£¾0$£¬
ËùÒÔ$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}¡Ý\frac{1}{{{b_{n+1}}}}$Ò²³ÉÁ¢£©
¢Ú$\frac{1}{b_n}=\frac{1}{3^n}¡Ü\frac{1}{3}$£¬¹Ê´æÔÚ$M¡Ý\frac{1}{3}$£»
ËùÒÔ·ûºÏ¢Ù¢Ú£¬¹Ê$\left\{{\frac{1}{b_n}}\right\}$Ϊ¡°¼ÎÎÄ¡±ÊýÁС­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éµÝÍÆÊýÁеÄÓ¦Óã¬ÒÔ¼°µÈ±ÈÊýÁеĶ¨ÒåÓëͨÏ¿¼²éж¨Ò壬½âÌâµÄ¹Ø¼üÊÇÀí½âж¨Ò壬ÕýÈ·ÔËÓÃж¨Ò壬ÔËËãÁ¿´ó£¬ÓÐÒ»¶¨µÄÄѶÈ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ¼«×ø±êϵÖУ¬Ô²¦Ñ=4sin¦ÈÓëÖ±Ïߦѣ¨sin¦È+cos¦È£©=4ÏཻËùµÃµÄÏÒ³¤Îª2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýf£¨x£©=$cos£¨2x+\frac{¦Ð}{3}£©+\sqrt{3}$sinxcosx£®
£¨¢ñ£© Çóº¯Êýf£¨x£©ÔÚ$[{-\frac{2¦Ð}{3}£¬\frac{¦Ð}{3}}]$Éϵĵ¥µ÷µÝ¼õÇø¼ä£®
£¨¢ò£© Èô¡÷ABCÂú×ãf£¨B£©=-$\frac{1}{18}£¬AC=2\sqrt{5}$£¬BC=6£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô¸´Êý$\frac{3-ai}{1+2i}$£¨iΪÐéÊýµ¥Î»£¬a¡ÊR£©ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µãÔÚµÚËÄÏóÏÞ£¬ÔòaµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®{a|a£¼-6}B£®$\left\{{a|-6£¼a£¼\frac{3}{2}}\right\}$C£®$\left\{{a|a£¼\frac{3}{2}}\right\}$D£®$\left\{{a|a£¼-6»òa£¾\frac{3}{2}}\right\}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖª×ÜÌåµÄ¸÷¸öÌåµÄÖµÓÉСµ½´óÒÀ´ÎΪ2£¬3£¬3£¬7£¬a£¬b£¬12£¬13.7£¬18.3£¬21£¬ÇÒ×ÜÌåµÄÖÐλÊýΪ10£¬ÈôҪʹ¸Ã×ÜÌåµÄ·½²î×îС£¬Ôòab=100£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔڵȱÈÊýÁÐ{an}ÖУ¬Èôa4£¬a8ÊÇ·½³Ìx2-4x+3=0µÄÁ½¸ù£¬Ôòa6µÄÖµÊÇ£¨¡¡¡¡£©
A£®-$\sqrt{3}$B£®$\sqrt{3}$C£®$\sqrt{3}$»ò-$\sqrt{3}$D£®¡À3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èô${£¨{x^2}-\frac{2}{x}£©^n}$µÄ¶þÏîÕ¹¿ªÊ½ÖУ¬ËùÓÐÏîµÄ¶þÏîʽϵÊýºÍΪ64£¬Ôò¸ÃÕ¹¿ªÊ½Öеij£ÊýÏîΪ240£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÈýµã×ø±ê·Ö±ðΪ£ºA£¨-1£¬-1£©£¬B£¨1£¬3£©£¬C£¨2£¬x£©£¬ÇÒÂú×ãÈýµã¹²Ïߣ¬Ôòx=£¨¡¡¡¡£©
A£®5B£®-5C£®4D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµãA£¨4£¬1£©£¬B£¨0£¬-1£©£¬ÔòÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®y=-2x+4B£®y=2x-4C£®y=-2x+2D£®y=-$\frac{1}{2}$x+3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸