·ÖÎö £¨1£©µ±n¡Ý2ʱ£¬${a_n}={S_n}-{S_{n-1}}=\frac{a}{a-1}{a_n}-\frac{a}{a-1}{a_{n-1}}$$\frac{a_n}{{{a_{n-1}}}}=a$£¬´Ó¶ø¿ÉµÃ{an}ÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÓÉ´Ë¿ÉÇó{an}µÄͨÏʽ£»
£¨2£©È·¶¨ÊýÁÐ{bn}µÄͨÏÀûÓÃ{bn}ΪµÈ±ÈÊýÁУ¬¿ÉÇóaµÄÖµ£»ÑéÖ¤¡°ºêʵ¡±ÊýÁеÄÁ½¸öÌõ¼þ£¬¼´¿ÉÖ¤µÃ£®
½â´ð ½â£º£¨1£©ÒòΪ${S_1}=\frac{a}{a-1}£¨{a_1}-1£©$£¬ËùÒÔa1=a
µ±n¡Ý2ʱ£¬${a_n}={S_n}-{S_{n-1}}=\frac{a}{a-1}{a_n}-\frac{a}{a-1}{a_{n-1}}$$\frac{a_n}{{{a_{n-1}}}}=a$£¬
¼´{an}ÒÔaΪÊ×ÏaΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
ËùÒÔ${a_n}=a•{a^{n-1}}={a^n}$£» ¡£¨4·Ö£©
£¨2£©ÓÉ£¨1£©Öª£¬${b_n}=\frac{{2¡Á\frac{a}{a-1}£¨{a_n}-1£©}}{a_n}+1=\frac{{£¨3a-1£©{a_n}-2a}}{{£¨a-1£©{a_n}}}$£¬
Èô{bn}ΪµÈ±ÈÊýÁУ¬ÔòÓÐ${b_2}^2={b_1}•{b_3}$£¬¶øb1=3£¬${b_2}=\frac{3a+2}{a}$£¬${b_3}=\frac{{3{a^2}+2a+2}}{a^2}$
¹Ê${£¨\frac{3a+2}{a}£©^2}=3•\frac{{3{a^2}+2a+2}}{a^2}$£¬½âµÃ$a=\frac{1}{3}$¡£¨7·Ö£©
ÔÙ½«$a=\frac{1}{3}$´úÈëµÃ£º${b_n}={3^n}$£¬ÆäΪµÈ±ÈÊýÁУ¬
ËùÒÔ$a=\frac{1}{3}$³ÉÁ¢¡£¨8·Ö£©
ÓÉÓÚ¢Ù$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}=\frac{{\frac{1}{3^n}+\frac{1}{{{3^{n+2}}}}}}{2}£¾\frac{{2\sqrt{\frac{1}{3^n}•\frac{1}{{{3^{n+2}}}}}}}{2}=\frac{1}{{{3^{n+1}}}}=\frac{1}{{{b_{n+1}}}}$¡£¨10·Ö£©
£¨»ò×ö²î¸ü¼òµ¥£ºÒòΪ$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}-\frac{1}{{{b_{n+1}}}}=\frac{5}{{{3^{n+2}}}}-\frac{1}{{{3^{n+1}}}}=\frac{2}{{{3^{n+2}}}}£¾0$£¬
ËùÒÔ$\frac{{\frac{1}{b_n}+\frac{1}{{{b_{n+2}}}}}}{2}¡Ý\frac{1}{{{b_{n+1}}}}$Ò²³ÉÁ¢£©
¢Ú$\frac{1}{b_n}=\frac{1}{3^n}¡Ü\frac{1}{3}$£¬¹Ê´æÔÚ$M¡Ý\frac{1}{3}$£»
ËùÒÔ·ûºÏ¢Ù¢Ú£¬¹Ê$\left\{{\frac{1}{b_n}}\right\}$Ϊ¡°¼ÎÎÄ¡±ÊýÁС£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éµÝÍÆÊýÁеÄÓ¦Óã¬ÒÔ¼°µÈ±ÈÊýÁеĶ¨ÒåÓëͨÏ¿¼²éж¨Ò壬½âÌâµÄ¹Ø¼üÊÇÀí½âж¨Ò壬ÕýÈ·ÔËÓÃж¨Ò壬ÔËËãÁ¿´ó£¬ÓÐÒ»¶¨µÄÄѶÈ
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | {a|a£¼-6} | B£® | $\left\{{a|-6£¼a£¼\frac{3}{2}}\right\}$ | C£® | $\left\{{a|a£¼\frac{3}{2}}\right\}$ | D£® | $\left\{{a|a£¼-6»òa£¾\frac{3}{2}}\right\}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -$\sqrt{3}$ | B£® | $\sqrt{3}$ | C£® | $\sqrt{3}$»ò-$\sqrt{3}$ | D£® | ¡À3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 5 | B£® | -5 | C£® | 4 | D£® | -4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | y=-2x+4 | B£® | y=2x-4 | C£® | y=-2x+2 | D£® | y=-$\frac{1}{2}$x+3 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com