精英家教网 > 高中数学 > 题目详情
12.若直线l1:ax+2y+6=0与直线l2:x+(a-1)y+(a2-1)=0平行而不重合,则a等于(  )
A.-1或2B.-1C.2D.$\frac{2}{3}$

分析 先验证无斜率情况,再利用平行关系可解结果.

解答 解:当a=0或a=1时,都不满足条件,
当a≠0且a≠1时,两直线平行,
则-$\frac{a}{2}$=$\frac{1}{1-a}$,
即a2-a-2=0,
解得a=2或a=-1,
经验证a=-1时两直线平行且不重合,a=2时两直线重合.
故选:B.

点评 本题考查了直线平行的条件,要注意直线有斜率和无斜率两种情况,不可漏掉无斜率情况;要注意直线重合的情况.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,则f(x)>0的解集为(1,+∞)∪(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个与正四棱锥的底面平行的平面把正四棱锥截成两部分,一部分是棱锥,一部分是棱台,已知被截得的棱台的上、下底面的边长分别是方程x2-6x+8=0的两根,且截得的棱台的侧面积等于此棱台上、下底面面积之和,则该四校锥的高为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:
(1)cos20°•cos40°•cos80°;
(2)tan70°•cos10°•($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,A(-1,2),B(4,-2),C(3,7),试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方形ABCD中,AB=AD=2,M,N分别为边BC,CD上的两个动点且MN=$\sqrt{2}$,则$\overline{AM}$•$\overline{AN}$的取值范围为(  )
A.[4,8-2$\sqrt{2}$]B.[4-2$\sqrt{2}$,8]C.[4,8+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,8-2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,S5=28,S10=36,则S15等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若点A(1,3)关于直线y=kx+b的对称点B(-2,1),则k+b=$\frac{11}{4}$.

查看答案和解析>>

同步练习册答案