精英家教网 > 高中数学 > 题目详情

【题目】已知函数是单调递增函数,其反函数是

(1)若,求并写出定义域

(2)对于⑴的,设任意,求证:

(3)已知函数的图象有交点,求证:它们的交点一定在直线上.

【答案】(1)(2)证明见详解;(3)证明见详解.

【解析】

1)根据反函数的求解过程,即可求得,再求原函数值域,即为反函数的定义域;

2)根据(1)中所求,用分析法将不等式进行不断转换,即可证明;

3)根据互为反函数的两个函数的特点,以及函数单调性,即可证明.

1)因为,故可得,又因为

,故

又因为时,单调递增,故其值域为

的定义域为

综上所述:.

2)由(1)可知

要证

即证

也就是证

因为,故,则,同理可得

成立,

则原不等式成立,即证.

3)证明:设是函数的交点,

故可得

故可得

过点

又因为是单调第增函数,

故当时,,即,这与题设矛盾;

时,,即,这也与题设矛盾;

时,,即,满足题意.

综上所述,若有交点,则交点一定在直线上,即证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】商家通常依据乐观系数准则确定商品销售价格,及根据商品的最低销售限价a,最高销售限价bba)以及常数x0x1)确定实际销售价格c=a+xb﹣a),这里,x被称为乐观系数.

经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)若函数上是增函数,求的取值范围.

2)若存在,使得关于的方程有三个不相同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线轴,轴分别相交于点BC,经过BC两点的抛物线轴的另一交点为A,顶点为P,且对称轴为直线.

1)求该抛物线的函数表达式;

2)连结AC.请问在轴上是否存在点Q,使得以点PBQ为顶点的三角形与ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系. 已知曲线的极坐标方程为 ,直线 的参数方程为 (为参数).

(I)分别求曲线的直角坐标方程和直线 的普通方程;

(II)设曲线和直线相交于两点,求弦长的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式,且)对任意实数恒成立,则的最大值为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校拟建一块五边形区域的“读书角”,三角形区域ABE为书籍摆放区,沿着ABAE处摆放折线形书架(书架宽度不计),四边形区域为BCDE为阅读区,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CDm

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求书架总长度AB+AE的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对某校的100名学生进行不记名问卷调查,内容为一周的课外阅读时长和性别等进行统计,如表:

1)课外阅读时长在20以下的女生按分层抽样的方式随机抽取7人,再从7人中随机抽取2人,求这2人课外阅读时长不低于15的概率;

2)将课外阅读时长为25以上的学生视为“阅读爱好”者,25以下的学生视为“非阅读爱好”者,根据以上数据完成2×2列联表:

非阅读爱好者

阅读爱好者

总计

女生

男生

总计

能否在犯错概率不超过0.01的前提下,认为学生的“阅读爱好”与性别有关系?

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似的表示为,已知此生产线年产量最大为吨.

1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案