精英家教网 > 高中数学 > 题目详情
8.已知0<a<b<1,比较(1-a)a,(1-b)b和(1-a)b的大小.

分析 0<a<b<1,可得0<1-b<1-a<1.利用指数函数与幂函数的单调性即可比较出大小关系.

解答 解:∵0<a<b<1,∴0<1-b<1-a<1.
∴(1-a)a>(1-a)b
(1-b)b<(1-a)b
∴(1-a)a>(1-a)b>(1-b)b

点评 本题考查了指数函数与幂函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.过抛物线y2=x的焦点F的直线的斜率大于等于1,交抛物线于A、B.且A点在x轴上方.则|FA|的取值范围是($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{2n-1•an}的前n项和Sn=1-$\frac{n}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{|{a}_{n}|}{n}$,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知非空集合A⊆N,且满足条件“若x∈A则(12-x)∈A”,试写出满足条件且只含有2个元素的所有集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+7a-2,x<1}\\{-a{x}^{2}-1,x≥1}\end{array}\right.$在(-∞,+∞)上单调递减,则实数a的取值范围[$\frac{1}{5}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,则f(3)+f(4)+…+f(2013)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2013}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知f($\frac{1}{2}$)=2,则f($\frac{2015}{2}$)=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tan($\frac{π}{4}$+α)=2.
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数y=f(x)定义域为{x|x∈R且x≠1},已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,则x>1时,f(x)的递减区间为(  )
A.[$\frac{5}{4}$,+∞)B.(1,$\frac{5}{4}$]C.[$\frac{7}{4}$,+∞)D.(1,$\frac{7}{4}$]

查看答案和解析>>

同步练习册答案