精英家教网 > 高中数学 > 题目详情

(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,

(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离. 

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是正方形,底面上的任意一点.

(1)求证:平面平面
(2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,△是边长为的等边三角形,平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图,正方体的棱长为1.应用空间向量方法求:

⑴ 求的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又

(1)求证:
(2)若,求直线所成角的余弦值;
(3)若平面与平面所成的角为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知几何体E—ABCD如图所示,其中四边形ABCD为矩形,为等边三角形,且点F为棱BE上的动点。

(I)若DE//平面AFC,试确定点F的位置;
(II)在(I)条件下,求二面角E—DC—F的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若两条直线互相平行,则等于(   )

A.2B.1C.D.

查看答案和解析>>

同步练习册答案