精英家教网 > 高中数学 > 题目详情

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a,b∈M. (Ⅰ)证明:| a+ b|<
(Ⅱ)比较|1﹣4ab|与2|a﹣b|的大小.

【答案】解:(Ⅰ)记f(x)=|x﹣1|﹣|x+2|=

由﹣2<﹣2x﹣1<0解得﹣ <x< ,则M=(﹣ ).

∵a、b∈M,∴|a|< ,|b|<

∴| a+ b|≤ |a|+ |b|<

(Ⅱ)由(Ⅰ)得a2 ,b2

因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2

=(4a2﹣1)(4b2﹣1)>0,…(9分)

所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|


【解析】(Ⅰ)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明;(Ⅱ)利用(Ⅰ)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两地相距海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为,其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

)请将该货轮从甲地到乙地的运输成本表示为航行速度(海里/小时)的函数.

)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D,若对于任意x1 , x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;② ;③f(1﹣x)=1﹣f(x).则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批产品共有1 564,产品按出厂顺序编号,号码从11 564,检测员要从中抽取15件产品作检测,请给出一个系统抽样方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ)求图中x的值;
(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(1)若函数上是减函数,求实数的取值范围;

(2)是否存在整数 ,使得的解集恰好是,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数的图象在点 处的切线方程;
(2)当 时,求证:
(3)若 对任意的 恒成立,求实数 的取值范围.

查看答案和解析>>

同步练习册答案