精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(
π
2
+x)cos(-x)+4sin
x
2
cos3
x
2
-sinx

(Ⅰ)求函数f(x)在x∈[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,已知A为锐角,f(A)=1,BC=2,S△ABC=1,求AC边的长.
分析:(Ⅰ)把函数解析式第一项的第一个因式利用诱导公式化简,第二个因式利用余弦函数为偶函数化简,第二项把cos3
x
2
分为cos
x
2
•cos2
x
2
,利用二倍角的正弦函数公式化简后,后两项提取sinx,再利用二倍角的余弦函数公式化简,然后再利用二倍角的正弦、余弦函数公式化简,提取
2
后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由x的范围求出这个角的范围,根据正弦函数的图象与性质得出正弦函数的值域,进而确定出函数的值域;
(Ⅱ)由第一问确定的函数f(x)的解析式,根据f(A)=1,整理后利用同角三角函数间的基本关系求出tanA的值,再利用特殊角的三角函数值求出A的度数,
解答:解:(Ⅰ)f(x)=sin(
π
2
+x)cos(-x)+4sin
x
2
cos3
x
2
-sinx,
=cos2x+2•2sin
x
2
cos
x
2
•cos2
x
2
-sinx
=cos2x+sinx(2cos2
x
2
-1)
=cos2x+sinxcosx
=
1
2
(cos2x+sin2x)+
1
2

=
2
2
sin(2x+
π
4
)+
1
2

∵x∈[0,
π
2
],∴2x+
π
4
∈[
π
4
4
],
∴f(x)的值域是[0,
2
+1
2
];
(Ⅱ)∵f(A)=cos2A+sinAcosA=1,
∴sinAcosA=1-cos2A=sin2A,
∴sinA=cosA,
∴A=
π
4

∵BC=a=2,
∴由余弦定理a2=b2+c2-2bccosA得:b2+c2-
2
bc=4①,
又S△ABC=
1
2
bcsinA=
2
4
bc=1,∴bc=2
2
②,
联立①②解得:b=
4±2
2

则AC=b=
4±2
2
点评:此题考查了余弦定理,三角形的面积公式,正弦函数的定义域与值域,以及三角函数的恒等变形,涉及的公式有:诱导公式,二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(附加题)
(Ⅰ)设非空集合S={x|m≤x≤l}满足:当x∈S时有x2∈S,给出下列四个结论:
①若m=2,则l=4
②若m=-
1
2
,则
1
4
≤l≤1

③若l=
1
2
,则-
2
2
≤m≤0
④若m=1,则S={1},
其中正确的结论为
②③④
②③④

(Ⅱ)已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若对于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,则b的取值范围为
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

将正奇数列{2n-1}中的所有项按每一行比上一行多一项的规则排成如下数表:
记aij是这个数表的第i行第j列的数.例如a43=17
(Ⅰ)  求该数表前5行所有数之和S;
(Ⅱ)2009这个数位于第几行第几列?
(Ⅲ)已知函数f(x)=
3x
3n
(其中x>0),设该数表的第n行的所有数之和为bn
数列{f(bn)}的前n项和为Tn,求证Tn
2009
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)已知函数f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若f(A)=
3
2
,△ABC的面积S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知函数f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案