分析 根据“稳定区间”的定义,我们要想说明函数存在“稳定区间”,我们只要举出一个符合定义的区间M即可,但要说明函数没有“稳定区间”,我们可以用反证明法来说明.由此对三个函数逐一进行判断,即可得到答案.
解答 解:①对于函数f(x)=ex ,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,
即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,故①不存在“稳定区间”.
②对于 f(x)=lnx+1,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有lna+1=a,且lnb+1=b,即方程lnx+1=x有两个解,
即y=lnx+1和y=x的图象有两个交点,这与y=lnx+1和y=x的图象有且只有一个公共点相矛盾,故②不存在“稳定区间”.
③对于f(x)=x3 存在“稳定区间”,如 x∈[0,1]时,f(x)=x3 ∈[0,1].故③存在“稳定区间”.
存在稳定区间区间的函数有 ③.
故答案为:③.
点评 本题考查的知识点是函数的概念及其构造要求,在说明一个函数没有“稳定区间”时,利用函数的性质、图象结合反证法证明是解答本题的关键,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{10}}}{5}$ | B. | $\frac{{3\sqrt{10}}}{20}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{2\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | $\frac{25}{2}$ | C. | $\frac{1248}{125}$ | D. | $\frac{1252}{125}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com