精英家教网 > 高中数学 > 题目详情

【题目】P为双曲线上任一点,,则以为直径的圆与以双曲线实轴长为直径的圆(

A.相切B.相交C.相离D.内含

【答案】A

【解析】

为双曲线的下焦点, 的中点为,连接,根据双曲线的定义可求得的长与两圆的半径的和与差的关系,可得到答案.

的中点为,则以为直径的圆的圆心为为双曲线的上焦点

为双曲线上支上一点,为双曲线的下焦点,连接,如图.

分别为的中点,所以.

由双曲线的定义可知.

所以

此时为直径的圆与以双曲线实轴长为直径的圆相外切.

为双曲线下支上一点,为双曲线的下焦点,连接,如图.

分别为的中点,所以.

由双曲线的定义可知.

所以

此时为直径的圆与以双曲线实轴长为直径的圆相外切.

所以为直径的圆与以双曲线实轴长为直径的圆相切

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面的中点,,.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)直线上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若函数上是单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲和乙两个人计划周末参加志愿者活动,约定在周日早上8:008:30之间到某公交站搭乘公交车一起去,已知在这段时间内,共有班公交车到达该站,到站的时间分别为8:058:158:30,如果他们约定见车就搭乘,则甲和乙两个人恰好能搭乘同一班公交车去的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点是椭圆上的动点,且面积的最大值为.

1)求椭圆的方程及离心率;

2)若是椭圆的左、右顶点,直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以为直径的圆与直线恒相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有材料、材料供选择,研究人员对附着在材料、材料上再结晶各做了50次试验,得到如下等高条形图.

1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?

材料

材料

合计

成功

不成功

合计

2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为,第三个环节生产合格的概率为,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标?

附:参考公式:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为坐标原点,椭圆的左,右焦点分别为,离心率为,双曲线的左,右焦点分别为,离心率为,已知

1)求的方程;

2)过的不垂直于轴的弦为弦的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,若S9=81a3+a5=14

1)求数列{an}的通项公式;

2)设bn=,若{bn}的前n项和为Tn,证明:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

同步练习册答案