精英家教网 > 高中数学 > 题目详情

【题目】在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

I) 取出的3件产品中一等品件数X的分布列和数学期望;

II) 取出的3件产品中一等品件数多于二等品件数的概率。

【答案】1 ,所以随机变量的分布列是


0

1

2

3






的数学期望

2)取出的件产品中一等品的件数多余二等品件的数

的概率为

【解析】解:(1)由于从件产品中任取件的结果为,从件产品中任取件,其中恰有件一等品的结果为,那么从件,其中恰有件一等品的概率为

,所以随机变量的分布列是


0

1

2

3






的数学期望 5

2)设取出的件产品中一等品的件数多余二等品件数为事件

恰好取出件一等品和件三等品为事件,

恰好取出件一等品为事件,

恰好取出件一等品为事件,

由于事件彼此互斥,且,

,

,

所以取出的件产品中一等品的件数多余二等品件的数

的概率为 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若处相切,试求的表达式;

(Ⅱ)若上是减函数,求实数的取值范围;

(Ⅲ)证明不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,曲线上的任意一点满足: .

(1)求点的轨迹方程;

(2)过点的直线与曲线交于 两点,交轴于点,设 ,试问是否为定值?如果是定值,请求出这个定值,如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是 , 中位数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)p:不论m取何实数,方程x2xm0必有实数根;

(2)q:存在一个实数x,使得x2x10

(3)r:等圆的面积相等,周长相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明计划在811日至820日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比, 以下为舒适, 为一般, 以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览.

(1)求小明连续两天都遇上拥挤的概率;

(2)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β为锐角, ,求α+2β.

查看答案和解析>>

同步练习册答案