精英家教网 > 高中数学 > 题目详情
13.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是(  )
A.在点x0处的斜率
B.在点(x0,f(x0))处的切线与x轴所夹的锐角的正切值
C.曲线y=f(x)在点(x0,f(x0))处切线的斜率
D.点(x0,f(x0))与点(0,0)连线的斜率

分析 利用导数的几何意义和直线斜率与倾斜角的关系.

解答 解:f′(x0)的几何意义是在切点(x0,f(x0))处的斜率,
故选:C.

点评 考查导数的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+1,g(x)=f(f(x))-2λf(x),若函数g(x)在区间[-2,-1]为增函数,则λ的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,周期是$\frac{π}{2}$的偶函数是(  )
A.y=sin4xB..y=tan2xC.y=cos22x-sin22xD.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三次函数f(x)=x3+ax2+7ax在 (-∞,+∞)是增函数,则a的取值范围是(  )
A.0≤a≤21B.a=0或a=7C.a<0或a>21D.a=0或a=21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O为坐标原点,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为P,右顶点为Q,以F1F2为直径的圆O过点P,直线PQ与圆O相交得到的弦长为$\frac{{2\sqrt{3}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于M,N两点,l与x轴,y轴分别相交于A,B两点,满足:①记MN的中点为E,且A,B两点到直线OE的距离相等;②记△OMN,△OAB的面积分别为S1,S2,若S1=λS2.当S1取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,设AB的长为a(a>0),AD=1,∠BAD=60°,E为CD的中点.若$\overrightarrow{AC}$•$\overrightarrow{BE}$=1,则a的值为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x2+2xf′(1),则f′(0)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x-y+2=0与圆C:(x-3)2+(y-3)2=4交于点A,B,过弦AB的中点的直径为MN,则四边形AMBN的面积为(  )
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,且$cosα=\frac{3}{5}$,$sinβ=\frac{{\sqrt{2}}}{10}$,求cos(α+β)的值.

查看答案和解析>>

同步练习册答案