精英家教网 > 高中数学 > 题目详情
f(x)为R上的偶函数,若对任意的x1、x2∈(-∞,0](x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0,则(  )
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:先根据对任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,可得函数f(x)在(-∞,0](x1≠x2)单调递增.进而可推断f(x)在[0,+∞)上单调递减,进而可判断出f(3),f(-2)和f(1)的大小.
解答: 解:∵对任意的x1、x2∈(-∞,0](x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0,
故f(x)在x1,x2∈(-∞,0](x1≠x2)单调递增.
又∵f(x)是偶函数,
∴f(x)在[0,+∞)上单调递减,
且满足n∈N*时,f(-2)=f(2),
由3>2>1>0,
得f(3)<f(-2)<f(1),
故选:C.
点评:本题主要考查了函数奇偶性的应用和函数的单调性的应用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|2x-a|
-
(x+2)(x+b)
x2
为偶函数,则a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:?x∈R,x2+1≠0是
 
命题.( 填:真、假 )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD,点M1,M2,M3,…,Mn-1和N1,N2,N3,…,Nn-1分别将线段BC和DC,n等分(n∈N*,n≥2),如图,若
AM1
+
AM2
+…+
AMn-1
+
AN1
+
AN2
+…+
ANn-1
=45
AC
,则n=(  )
A、29B、30C、31D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=2,b1=1,b2+S2=8,a5-2b2=a3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=
an,n为奇数
bn,n为偶数
,设数列{cn}前n项和为Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

由“a>b,则a+c>b+c”推理到“a>b,则ac>bc”是(  )
A、归纳推理B、类比推理
C、演绎推理D、都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,PD⊥底面ABCD,且PD=a,PA=PC=
2
a

(1)求证:点A在PA为直径的圆上;
(2)若在这个四棱锥内放一球,求此球的最大半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点 A (1,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1的倾斜角为
π
4
,l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若l1与圆C相交于P,Q两点,求△CPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥的三视图如图所示,则其外接球的体积为(  )
A、9
2
π
B、
81
16
2
π
C、18π
D、6π

查看答案和解析>>

同步练习册答案