分析 (1)连结AC1,设AC1与A1C相交于点E,连接DE,推导出DE∥BC1,从而D为AB的中点,再由△ABC是等边三角形,能证明CD⊥AB.
(2)推出A1A⊥AD,A1A⊥BC,从而A1A⊥平面ABC,设BC的中点为O,以O为原点,OB所在的直线为x轴,OO1所在的直线为y轴,OA所在的直线为z轴,建立空间直角坐标系O-xyz.利用向量法能求出二面角D-A1C-B1的余弦值.
解答 (本小题满分12分)
证明:(1)连结AC1,设AC1与A1C相交于点E,
连接DE,则E为AC1中点,
∵BC1∥平面A1CD,DE=平面A1CD∩平面ABC1,
∴DE∥BC1,∴D为AB的中点,
又∵△ABC是等边三角形,∴CD⊥AB.
解:(2)∵$A{D^2}+{A_1}{A^2}=5={A_1}{D^2}$,∴A1A⊥AD,
又B1B⊥BC,B1B∥A1A,∴A1A⊥BC,
又AD∩BC=B,∴A1A⊥平面ABC,
设BC的中点为O,B1C1的中点为O1,
以O为原点,OB所在的直线为x轴,OO1所在的直线为y轴,OA所在的直线为z轴,建立空间直角坐标系O-xyz.
则$C(-1,0,0),{A_1}(0,2,\sqrt{3}),D(\frac{1}{2},0,\frac{{\sqrt{3}}}{2}),{B_1}(1,2,0)$,
即$\overrightarrow{CD}=(\frac{3}{2},0,\frac{{\sqrt{3}}}{2}),\overrightarrow{C{A_1}}=(1,2,\sqrt{3}),\overrightarrow{C{B_1}}=(2,2,0)$,
设平面DA1C的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
由$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{CD}=0}\\{\overrightarrow{n_1}•\overrightarrow{C{A_1}}=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{\frac{3}{2}{x_1}+\frac{{\sqrt{3}}}{2}{z_1}=0}\\{{x_1}+2{y_1}+\sqrt{3}{z_1}=0}\end{array}}\right.$,令x1=1,得$\overrightarrow{n_1}=(1,1,-\sqrt{3})$,
设平面A1CB1的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
由$\left\{{\begin{array}{l}{\overrightarrow{n_2}•\overrightarrow{C{A_1}}=0}\\{\overrightarrow{n_2}•\overrightarrow{C{B_1}}=0}\end{array}}\right.$,得$\left\{{\begin{array}{l}{{x_2}+2{y_2}+\sqrt{3}{z_2}=0}\\{2{x_2}+2{y_2}=0}\end{array}}\right.$,令x2=1,得$\overrightarrow{n_2}=(1,-1,\frac{{\sqrt{3}}}{3})$,
∴$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}||\overrightarrow{n_2}|}}=\frac{1-1-1}{{\sqrt{5}×\sqrt{\frac{7}{3}}}}=-\frac{{\sqrt{105}}}{35}$,
故二面角D-A1C-B1的余弦值是$\frac{{\sqrt{105}}}{35}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $({\frac{1}{2}\;,\;\;\frac{2}{3}})$ | B. | $({-∞\;,\;\;\frac{2}{3}})$ | C. | $[{\frac{1}{2}\;,\;\;\frac{2}{3}})$ | D. | $({-∞\;,\;\;\frac{2}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $-\frac{24}{25}$ | C. | $\frac{7}{25}$ | D. | -$\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ¬p:?x∈R,log2(3x+1)>0 | B. | ¬p:?x∈R,log2(3x+1)>0 | ||
C. | ¬p:?x∈R,log2(3x+1)≤0 | D. | ¬p:?x∈R,log2(3x+1)≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=±$\frac{16}{9}x$ | B. | y=±$\frac{9}{16}$x | C. | y=±$\frac{3}{4}$x | D. | y=±$\frac{4}{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -$\frac{16}{5}$ | C. | -2 | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com