精英家教网 > 高中数学 > 题目详情

【题目】设递增等比数列{an}的前n项和为Sn,且a23S313,数列{bn}满足b1a1,点Pbnbn+1)在直线xy+20上,nN*.

1)求数列{an}{bn}的通项公式;

2)设cn,求数列{cn}的前n项和Tn.

【答案】1an3n1bn2n12Tn3﹣(n+1n1

【解析】

(1)利用基本量法求解,再代入到直线可得为等差数列,再进行通项公式求解即可.

(2)利用错位相减求和即可.

1)递增等比数列{an}的公比设为q,前n项和为Sn,且a23,S313,

可得a1q3,a1+a1q+a1q213,解得q3q,

由等比数列递增,可得q3,a11,则

Pbn,bn+1)在直线xy+20上,可得bn+1bn2,

b1a11,则bn1+2n1)=2n1

2cn2n1n1,

n项和Tn11+352n1n1,

Tn1352n1n,

相减可得Tn1+2n1)﹣(2n1n

1+22n1n,

化简可得Tn3﹣(n+1n1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面坐标系中xOy中,已知直线l的参数方程为t为参数),曲线C的参数方程为为参数).O为极点,x轴的非负半轴为极轴,建立极坐标系.

1)求曲线C的普通方程和直线l的极坐标方程;

2)设P为曲线C上的动点,求点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,, ,其频率分布直方图如图所示.

(1)若样本中月均用电量在的居民有户,求样本容量;

(2)求月均用电量的中位数;

(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD的底面是边长为2的正方形,平面PAD⊥平面ABCDPAAD,∠PDA45°EF分别为ABPC的中点.

1)证明:EF∥平面PAD

2)在线段BC上是否存在一点H,使平面PAH⊥平面DEF?若存在,求此时二面角CHDP的平面角的正切值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

某产品按行业生产标准分成8个等级,等级系数X依次为1,2……8,其中X≥5为标准AX≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6/件;乙厂执行标准B生产该产品,产品的零售价为4/件,假定甲、乙两厂得产品都符合相应的执行标准

I)已知甲厂产品的等级系数X1的概率分布列如下所示:

X1的数字期望EX1=6,求ab的值;

II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

3 5 3 3 8 5 5 6 3 4

6 3 4 7 5 3 4 8 5 3

8 3 4 3 4 4 7 5 6 7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.

在(I)、(II)的条件下,若以性价比为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注:(1)产品的性价比”=

2性价比大的产品更具可购买性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,在以为圆心,1为半径的圆上,且.

1)求椭圆的方程;

2)过点的直线交椭圆两点,过垂直的直线交圆两点,为线段的中点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处的切线与直线垂直,求的极值;

2)设与直线交于点,抛物线与直线交于点,若对任意,恒有,试分析的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线y2=4x的焦点相同,F1,F2C的左右焦点,MC上任意一点,最大值为1.

(1)求椭圆C的方程;

(2)不过点F2的直线l:y=kx+m(m0)交椭圆CA,B两点.

①若,且,求m的值.

②若x轴上任意一点到直线AF2BF2距离相等,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案