精英家教网 > 高中数学 > 题目详情
9.抛物线y2=2x的焦点为F,点P在抛物线上,点O为坐标系原点,若|PF|=3,则|PO|等于(  )
A.$\frac{3\sqrt{5}}{2}$B.3$\sqrt{3}$C.$\frac{5\sqrt{5}}{2}$D.4$\sqrt{2}$

分析 求出抛物线的焦点和准线方程,设出P的坐标,运用抛物线的定义,可得|PF|=d(d为P到准线的距离),求出P的坐标,即可得到所求值.

解答 解:抛物线y2=2x的焦点F($\frac{1}{2}$,0),准线l为x=-$\frac{1}{2}$,
设抛物线的点P(m,n),
则由抛物线的定义,可得|PF|=d(d为P到准线的距离),
即有m+$\frac{1}{2}$=3,
解得,m=$\frac{5}{2}$,
∴P$\frac{5}{2}$,$±\sqrt{5}$),
∴|PO|=$\frac{3\sqrt{5}}{2}$
故选A.

点评 本题考查抛物线的定义、方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的前n项和为Sn,若S2=2a2+3,S3=2a3+3,则公比q的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是(x-1)2+(y-1)2 =2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面向量$\overrightarrow{a}$=(-1,2)与$\overrightarrow{b}$=(3k-1,1)互相垂直,则k的值为(  )
A.$\frac{1}{6}$B.1C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间(-1,2)中任取一个数x,则使2x>3的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且过点F的直线y=2x-4与此双曲线只有一个交点,则双曲线的方程为$\frac{5{x}^{2}}{4}$-$\frac{5{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{a}{x}$+lnx-1.
(1)当a=2时,求f(x)在(1,f(1))处的切线方程;
(2)若a>0,且对x∈(0,+∞)时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.lg2+2lg5=(  )
A.1+lg5B.2+lg5C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程3x+4x=6x解的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案