精英家教网 > 高中数学 > 题目详情

【题目】设椭圆方程为,离心率为 是椭圆的两个焦点, 为椭圆上一点且 的面积为.

(1)求椭圆的方程;

(2)已知点,直线不经过点且与椭圆交于两点,若直线与直线的斜率之和为1,证明直线过定点,并求出该定点.

【答案】(1);(2)证明见解析, .

【解析】试题分析

1)由离心率可得根据的面积为得到,然后在焦点三角形中利用余弦定理并结合定义可得,进而得到 ,于是得到椭圆的方程.(2)由题意设直线方程为,联立椭圆方程后得到二次方程,由根与系数的关系及可得,故直线方程为,即,可得过定点.

试题解析:

(1)由题意得,故

,∴

中,由余弦定理得

,

解得

∴椭圆的方程为.

(2)由题意设直线方程为

消去y整理得

∵直线与椭圆交于两点,

设点

由题意得

整理得

∴直线方程为,即

∴直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是菱形, ,平面平面

在棱上运动.

(1)当在何处时, 平面

(2)已知的中点, 交于点,当平面时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线,曲线为参数), 以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)若射线分别交两点, 求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边长都是有理数.

(1)求证:cos A是有理数;

(2)求证:对任意正整数n,cos nA是有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角梯形中, ,将沿折起至,使二面角为直角.

(1)求证:平面平面

(2)若点满足, ,当二面角为45°时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程有两个不等的负根;关于的方程无实根,若为真,为假,求的取值范围.

查看答案和解析>>

同步练习册答案