分析 (1)当k=0时,易知是“可拆函数”;当k≠0时,方程可化为x2+x+1=0,从而判断;
(2)若函数f(x)=2x+b+2x是“可拆函数”,化简可得b=2x-2有解,从而解得;
(3)由题意知判断方程cos(x+1)=cosx+cos1是否有解即可.
解答 解:(1)当k=0时,f(x)=0,是“可拆函数”;
当k≠0时,
f(x+1)=$\frac{k}{x+1}$,f(1)=k,
故$\frac{k}{x+1}$=$\frac{k}{x}$+k,
即x2+x+1=0,
方程无解,
故f(x)=$\frac{k}{x}$不是“可拆函数”;
(2)若函数f(x)=2x+b+2x是“可拆函数”,
则方程f(x+1)=f(x)+f(1)有解,
即2(x+1)+b+2x+1=2x+b+2x+2+b+2有解,
即b=2x-2有解,
故b>-2;
(3)证明:令f(x+1)=f(x)+f(1),
即cos(x+1)=cosx+cos1,
即cosxcos1-sinxsin1-cosx=cos1,
即(cos1-1)cosx-sinxsin1=cos1,
故存在θ,
故$\sqrt{(cos1-1)^{2}+si{n}^{2}1}$cos(x+θ)=cos1,
即$\sqrt{2-2cos1}$cos(x+θ)=cos1,
即cos(x+θ)=$\frac{cos1}{\sqrt{2-2cos1}}$,
∵cos21-(2-2cos1)
=cos21+2cos1-2
<cos2$\frac{π}{4}$+2cos$\frac{π}{4}$-2=$\frac{1}{2}$+$\sqrt{2}$-2<0,
故0<$\frac{cos1}{\sqrt{2-2cos1}}$<1,
故方程cos(x+1)=cosx+cos1有解,
即f(x)=cosx是“可拆函数”.
点评 本题考查了学生的接受能力及分类讨论的思想应用,同时考查了三角函数的化简与应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,5] | B. | (0,5) | C. | [5,+∞) | D. | (5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com