精英家教网 > 高中数学 > 题目详情
10.设f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有$\frac{xf′(x)-f(x)}{{x}^{2}}$<0恒成立,则$\frac{f(x)}{x}>0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

分析 可设g(x)=$\frac{f(x)}{x}$,根据条件可以判断g(x)为偶函数,并可得到x>0时,g′(x)<0,从而得出g(x)在(0,+∞)上单调递减,并且g(2)=0,从而由g(x)>g(2)便可得到|x|<2,且x≠0,这样即可得出原不等式的解集.

解答 解:设g(x)=$\frac{f(x)}{x}$,f(x)是R上的奇函数,∴g(x)为偶函数;
x>0时,$g′(x)=\frac{xf′(x)-f(x)}{{x}^{2}}<0$;
∴g(x)在(0,+∞)上单调递减,g(2)=0;
∴由g(x)>0得,g(x)>g(2);
∴g(|x|)>g(2);
∴|x|<2,且x≠0;
∴-2<x<0,或0<x<2;
∴$\frac{f(x)}{x}>0$的解集为(-2,0)∪(0,2).
故选:B.

点评 考查奇函数、偶函数的定义,根据导数符号判断函数单调性的方法,根据函数单调性解不等式的方法,知道偶函数g(x)>g(2)等价于g(|x|)>g(2).

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年湖南益阳市高二9月月考数学(理)试卷(解析版) 题型:选择题

设集合P={x∈R|x2+2x<0},Q={x∈R| 1/(x+1)>0},则=( )

A.(﹣2,1) B.(﹣1,0) C. D.(﹣2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知p:(x+3)(x+4)=0,q:x+3=0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\left\{\begin{array}{l}{4x-3y+12≥0}\\{4x+3y-12≤0}\\{y≥0}\end{array}\right.$,表示的平面区域为Ω,
(1)求平面区域为Ω内整点的个数;
(2)若圆C在区域为Ω内,且面积最大,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知对数函数f(x)过点(2,4),则f($\root{4}{2}$)的值为(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex,x∈R.求f(x)的反函数的图象上图象上点(1,0)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点.求证:直线AE⊥直线DA1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实数m>1,${∫}_{1}^{2}$mxdx+${∫}_{m}^{{m}^{2}}$logmx=15,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.P点在则△ABC所在的平面外,O点是P点在平面ABC内的射影,PA、PB、PC两两垂直,则D点是则△ABC的垂心.(填外心,内心,垂心,重心)

查看答案和解析>>

同步练习册答案