精英家教网 > 高中数学 > 题目详情
(2013•日照二模)某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图).
分数 频数 频率
(0,0.5) 5 0.05
[0.5,1) 8 0.08
[1,1.5) 22 0.22
[1.5,2)   a
[2,2.5) 20 0.20
[2.5,3) 12 0.12
[3,3.5) b  
[3.5,4]    
(Ⅰ)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;
(Ⅱ)设A1,A2,A3是月用水量为[0,2)的家庭代表.B1,B2是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表B1,B2至少有一人被选中的概率.
分析:(I)根据频率直方图的高为频率与组距的比,计算出a;根据频率=
频数
样本数
求得b;再根据频率分布表求家庭月用水量不超过3吨的频率即可;
(II)根据古典概型的计算公式,先求五代表中任选2人的所有情况(事件),再求B1、B2至少有一人被选中的情况(事件),代入公式计算即可.
解答:解:(Ⅰ)由频率分布直方图可得a=0.5×0.5=0.25,
∴月用水量为[1.5,2)的频数为25.
故2b=100-92=8,得b=4.
由频率分布表可知,月用水量不超过3吨的频率为0.92,
所以,家庭月用水量不超过3吨的频率约为0.92.                
(Ⅱ)由A1、A2、A3、B1、B2五代表中任选2人共有如下10种不同选法,分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
记“B1、B2至少有一人被选中”的事件为A,事件A包含的基本事件为:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),
共包含7个基本事件数.
又基本事件的总数为10,所以P(A)=
7
10

即家庭代表B1、B2至少有一人被选中的概率为
7
10
点评:本题考查频率分布直方图及古典概型的概率计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•日照二模)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)设全集U={-2,-1,0,1,2},集合A={-1,1,2},B={-1,1},则A∩(?B)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)“x2-2x<0”是“0<x<4”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)执行如图所示的程序,若输出的结果是4,则判断框内实数m的值可以是(  )

查看答案和解析>>

同步练习册答案