精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,直线y=2x-
2
5
与圆x2+y2=1交于A,B两点,记∠xOA=α(0<α<
π
2
),∠xOB=β(π<β<
2
),则sin(α+β)的值为(  )
A、
3
5
B、
4
5
C、-
3
5
D、-
4
5
分析:把直线与圆的方程联立得到关于x与y的二元二次方程组,求出方程组的解即可得到交点A和B的坐标,然后根据α为第一象限的角,由点A的坐标分别求出sinα和cosα的值,β为第三象限的角,由点B的坐标分别求出sinβ和cosβ的值,最后把所求的式子利用两角和的正弦函数公式化简后,将各自的值代入即可求出值.
解答:解:联立得:
y=2x-
2
5
x2+y2=1

解得:
x=
3
5
y=
4
5
x=-
7
25
y=-
24
25

所以点A(
3
5
4
5
),点B(-
7
25
,-
24
25
).
由∠xOA=α为第一象限的角,∠xOB=β为第三象限的角,
根据两点的坐标分别得到:
sinα=
4
5
,cosα=
3
5
,sinβ=-
24
25
,cosβ=-
7
25

则sin(α+β)=sinαcosβ+cosαsinβ=
4
5
×(-
7
25
)+
3
5
×(-
24
25
)=-
4
5

故选D
点评:此题考查学生掌握象限角的三角函数值的求法,灵活运用两角和的正弦函数公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案