精英家教网 > 高中数学 > 题目详情
棱长为1的正方体ABCD-A1B1C1D1中,点P1,P2分别是线段AB,BD1(不包括端点上的动点,且线段P1P2平行于平面A1ADD1,则四面体P1P2AB1的体积的最大值是(  )
A、
1
24
B、
1
12
C、
1
6
D、
1
2
考点:棱柱、棱锥、棱台的体积
专题:计算题,空间位置关系与距离
分析:由题意可得△P1P2B∽△AD1B,设出P1B=x,则P1P2=
2
x,P2到平面AA1B1B的距离为x,求出四面体的体积,通过二次函数的最值,求出四面体的体积的最大值.
解答: 解:由题意在棱长为1的正方体ABCD-A1B1C1D1中,点P1,P2分别是线段AB,BD1(不包括端点)上的动点,且线段P1P2平行于平面A1ADD1,△P1P2B∽△AD1B,
设P1B=x,x∈(0,1),则P1P2=
2
x,P2到平面AA1B1B的距离为x,
所以四面体P1P2AB1的体积为V=
1
3
×
1
2
×(1-x)×1×x
=
1
6
(x-x2)

当x=
1
2
时,体积取得最大值:
1
24

故选A.
点评:本题考查正方形中,几何体的体积的求法,找出所求四面体的底面面积和高是解题的关键,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x
+
1
2

(1)求f(x)的定义域;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,E、F分别为AC、BC的中点.
(1)证明:EF∥平面PAB;(2)若PA=PB,CA=CB,求证:AB⊥PC;
(3)若PB=AB=CB,ABC=120°,PB⊥面ABC,求二面角P-AC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)-3x]=4,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,BC⊥平面PAB,且PA=P,O是AB的中点,底面ABCD是直角梯形,AD∥BC,BC=1,AB=2,AD=3.
(1)求证:平面PAC⊥平面POC;
(2)若PA=3,Q是PB的中点,求三棱锥Q-OBC与三棱锥P-OCD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是集合{2t+m|0≤m<t,且m,t∈N}中所有的数从小到大排列成的数列,即2,4,5,8,9,10,…将数列各项按照从上到下,从左到右的原则写成如图所示的三角形数表.

(Ⅰ)在答题卡上写出这个三角形数表的第四行的各数
(Ⅱ)求a50的值
(Ⅲ)设第i行的各数之和为bi(i=1,2,3…),(例如:b1=2,b2=4+5,b3=8+9+10,…),求Tn=b1+b2+b3+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

一束光线l自A(1,0)发出,射到直线m:x+y+1=0上,被直线m反射到圆x2+y2-6x-2y+9=0上的点B.
(1)当反射线通过圆心C时,求入射光线l的方程;
(2)求光线由A到达B的最短路径的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的偶函数,x≥0时,f(x)=x2-4x+3.
(1)求x<0时函数的解析式;
(2)在给出的直角坐标系中画出y=f(x)的图象,并写出f(x)的单调递增区间;
(3)求函数f(x)在[0,3]的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,且3a+2b+c=0,求
c
a
的取值范围.

查看答案和解析>>

同步练习册答案