精英家教网 > 高中数学 > 题目详情
13.如图,长方体ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M为A1D1的中点,P为底面四边形ABCD内的动点,且满足PM=PC,则点P的轨迹的长度为(  )
A.$\sqrt{3}$B.3C.$\frac{2π}{3}$D.$\sqrt{5}$

分析 取AB 的中点E,由题意,点P的轨迹为DE的长度,利用勾股定理求值.

解答 解:取AB 的中点E,AD的中点N,
如图,因为MC在底面的射影为NC,并且DE⊥NC,所以DE⊥MC,
所以DE上的点到M,C 的距离相等,P在DE上,所以PM=PC,
所以点P的轨迹为DE,
因为长方体ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M为A1D1的中点,
所以DE=$\sqrt{{2}^{2}+{1}^{1}}=\sqrt{5}$;
故选D.

点评 本题考查了动点的轨迹以及长方体中线段长度;关键是发现满足条件的轨迹.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数      N(n,4)=n2
五边形数      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数      N(n,6)=2n2-n
可以推测N(n,k)的表达式,由此计算N(10,24)=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,x∈R,则f(x)零点的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3,设a>-1,且当x∈[-$\frac{a}{2}$,$\frac{1}{2}$]时,f(x)≤g(x),则a的取值范围是(-1,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logax,a>0,a≠1.
(1)若复数z=(a+2i)(1+i)(i为虚数单位)是纯虚数,求方程f(x)=-2的根;
(2)若f(x)=logax在区间[1,2]上有最大值1,求不等式f(x-1)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一艘海轮从A出发,沿北偏东75°的方向航行(2$\sqrt{3}$-2)nmile到达海岛B,然后从B出发,沿北偏东15°的方向航行4nmile到达海岛C.
(1)求AC的长;
(2)如果下次航行直接从A出发到达C,求∠CAB的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有以下四个等式:0+$\overrightarrow{a}$=$\overrightarrow{a}$,0•$\overrightarrow{a}$=0,3•$\overrightarrow{0}$=0,$\overrightarrow{a}$-$\overrightarrow{a}$=0.其中正确的等式的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z=1-i.
(1)设w=z(1+i)-1-3i,求|w|;
(2)如果$\frac{{z}^{2}+az+b}{1+i}$=i,求实数a,b的值.

查看答案和解析>>

同步练习册答案