精英家教网 > 高中数学 > 题目详情
(2012•广东)曲线y=x3﹣x+3在点(1,3)处的切线方程为 _________ 
2x﹣y+1=0
y′=3x2﹣1
令x=1得切线斜率2
所以切线方程为y﹣3=2(x﹣1)
即2x﹣y+1=0
故答案为:2x﹣y+1=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数上的最大值为).
(1)求数列的通项公式;
(2)求证:对任何正整数n (n≥2),都有成立;
(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=1+x-+…+,则下列结论正确的是(  )
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(-1,0)上恰有一个零点
D.f(x)在(-1,0)上恰有两个零点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

处有极大值,则常数的值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f′′(x)是函数y=f(x)的导数f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有′拐点′;任何一个三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一发现作为条件,则函数f(x)=x3-3x2+3x的对称中心为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;  
(3)设为两曲线的交点,且两曲线在交点处的切线分别为.若取,试判断当直线轴围成等腰三角形时值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=(  )
A.﹣4B.﹣2C.2D.4

查看答案和解析>>

同步练习册答案