分析 (1)推导出{an}是公比为$\frac{1}{3}$的等比数列,a1=$\frac{1}{3}$.从而求出an.数列{bn}中,b1=1,b2=$\frac{1}{2}$,$\frac{2}{{b}_{n+1}}$=$\frac{1}{{b}_{n}}$+$\frac{1}{{b}_{n+2}}$(n∈N*),得到$\frac{1}{{b}_{1}}=1$,d=$\frac{1}{{b}_{2}}-\frac{1}{{b}_{1}}$=1,由此能求出bn.
(2)数列{cn}满足cn=$\frac{a_n}{b_n}$=n•($\frac{1}{3}$)n,利用错位相减法求出Tn=$\frac{3}{4}-\frac{3+2n}{4}×\frac{1}{{3}^{n}}$.从而$\frac{3+2n}{4×{3}^{n}}$≤m,由此利用导数性质能求出m的范围.
解答 解:(1)由2Sn+an=1,得Sn=$\frac{1}{2}$(1-an).
当n≥2时,an=Sn-Sn-1=$\frac{1}{2}$(1-an)-$\frac{1}{2}$(1-an-1)=-$\frac{1}{2}{a}_{n}+\frac{1}{2}{a}_{n-1}$,
即2an=-an+an-1,∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由题意可知an-1≠0.
∴{an}是公比为$\frac{1}{3}$的等比数列,
而S1=a1=$\frac{1}{2}$(1-a1),
∴a1=$\frac{1}{3}$.∴an=$\frac{1}{3}$×($\frac{1}{3}$)n-1=($\frac{1}{3}$)n.
∵数列{bn}中,b1=1,b2=$\frac{1}{2}$,$\frac{2}{{b}_{n+1}}$=$\frac{1}{{b}_{n}}$+$\frac{1}{{b}_{n+2}}$(n∈N*),
∴$\frac{1}{{b}_{1}}=1$,$\frac{1}{{b}_{2}}$=2,d=$\frac{1}{{b}_{2}}-\frac{1}{{b}_{1}}$=1,
∴$\frac{1}{{b}_{n}}$=$\frac{1}{{b}_{1}}+(n-1)d$=1+n-1=n,
∴bn=$\frac{1}{n}$.
(2)数列{cn}满足cn=$\frac{a_n}{b_n}$=n•($\frac{1}{3}$)n,
∴Tn=c1+c2+c3+…cn=1$•\frac{1}{3}+2•(\frac{1}{3})^{2}+3•(\frac{1}{3})^{3}+…+n•(\frac{1}{3})^{n}$,①
$\frac{1}{3}{T}_{n}$=$1•(\frac{1}{3})^{2}+2•(\frac{1}{3})^{3}+3•(\frac{1}{3})^{4}+…+n•(\frac{1}{3})^{n+1}$,②
①-②,得:$\frac{2}{3}$Tn=$\frac{1}{3}+(\frac{1}{3})^{2}+(\frac{1}{3})^{3}+(\frac{1}{3})^{4}+…+(\frac{1}{3})^{n}$-n•($\frac{1}{3}$)n+1
=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}-n•(\frac{1}{3})^{n+1}$=$\frac{1}{2}-(\frac{1}{2}+\frac{n}{3})•\frac{1}{{3}^{n}}$,
∴Tn=$\frac{3}{4}-\frac{3+2n}{4}×\frac{1}{{3}^{n}}$.
∵存在m使Tn≥$\frac{3}{4}$-m恒成立,
∴Tn=$\frac{3}{4}-\frac{3+2n}{4}×\frac{1}{{3}^{n}}$≥$\frac{3}{4}$-m恒成立,
∴$\frac{3+2n}{4×{3}^{n}}$≤m,
设y=$\frac{3+2n}{4×{3}^{n}}$,则y′=$\frac{2-(3+2n)ln3}{4×{3}^{n}}$<0,∴y=$\frac{3+2n}{4×{3}^{n}}$是减函数,
∴[$\frac{3+2n}{4×{3}^{n}}$]max=$\frac{3+2×1}{4×{3}^{1}}$=$\frac{5}{12}$,
∴m≥$\frac{5}{12}$,即m的范围是[$\frac{5}{12}$,+∞).
点评 本题考查数列的通项公式的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意构造法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 31 | B. | 32 | C. | 63或$\frac{133}{27}$ | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com