精英家教网 > 高中数学 > 题目详情
将函数的图形向右平移个单位后得到的图像,已知的部分图像如图所示,该图像与y轴相交于点,与x轴相交于点P、Q,点M为最高点,且的面积为.

(1)求函数的解析式;
(2)在中,分别是角A,B,C的对边,,且,求面积的最大值.
(1);(2).

试题分析:本题主要考查三角函数图象、三角函数图象的平移变换、余弦定理、三角函数面积、基本不等式等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,先将的图象向右平移个单位得到的解析式,由解析式得最大值M=2,利用三角形面积公式可得到,而周期,利用周期的计算公式得到,又因为,代入解析式得到的值,从而得到的解析式;第二问,先利用,利用特殊角的三角函数值得到角A的大小,再利用余弦定理得到b和c的一个关系式,利用基本不等式得到,代入到三角形面积公式中,得到面积的最大值.
(1)由题意可知
由于,则,∴,即                2分
又由于,且,则,∴      5分
.                                    6分
(2),∴         8分
由余弦定理得,∴                    10分
,当且仅当时,等号成立,故的最大值为. 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,的最大值为3,的图像的相邻两对称轴间的距离为2,在轴上的截距为2.
(1)求函数的解析式;
(2)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数f (x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数++(为常数)
(1)求函数的最小正周期;
(2)若函数上的最大值与最小值之和为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的值;
(2)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为奇函数,且满足不等式,则实数的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2014·大庆模拟)已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π.
(1)求ω的值.
(2)设α,β∈,f=,f=-,求sin(α+β)的值.
(3)若x∈[-π,π],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中>0,),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
(1)求的值;
(2)如果在区间的最小值为,求的值.

查看答案和解析>>

同步练习册答案