精英家教网 > 高中数学 > 题目详情

【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.为了了解学生和家长对网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:

若评分不低于80分,则认为该用户对此授课方式“认可”,否则认为该用户对此授课方式“不认可”.以该样本中AB城市的用户对此授课方式“认可”的频率分别作为AB城市用户对此授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用表示这4个用户中对此授课方式“认可”的用户个数,则__________;用表示从A城市随机抽取2个用户中对此授课方式“认可”的用户个数,则的数学期望为_________

【答案】

【解析】

先根据频率得出“认可”授课方式的概率,结合独立重复试验可求,利用二项分布的期望公式可得的数学期望.

根据题意可得AB城市的用户对此授课方式“认可”概率分别为

由题意可知,所以.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且曲线关于直线对称.

1)求

2)若直线与曲线交于,直线与曲线交于,且的面积不超过,求直线的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:

①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);

②曲线C上任意一点到原点的距离都不超过

③曲线C所围成的“心形”区域的面积小于3.

其中,所有正确结论的序号是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数有两个极值点x1x2,且x1x2,则有(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为2的正方体中,EDC中点,F在线段上运动,则三棱锥的外接球的表面积最小值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.E为椭圆在第一象限内一点,点F在椭圆上且与点E关于原点对称,直线与椭圆交于AB两点,则点EF到直线x+y-1=0的距离之和的最大值是________;此时四边形AEBF的面积是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽粒,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为________;该六面体内有一球,则该球体积的最大值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e是自然对数的底数.

1)若函数的极大值为,求实数a的值;

2)当ae时,若曲线处的切线互相垂直,求的值;

3)设函数,若0对任意的x(01)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若上恒成立,求实数的取值范围;

3)在(2)的条件下(提示:可以用第(2)问的结论),对任意的,证明:.

查看答案和解析>>

同步练习册答案